
NEPHROLOGY  •  July 2013   EMJ  EUROPEAN MEDICAL JOURNAL32

CLINICAL PROTEOMICS: THE POTENTIALITY OF 
URINE ANALYSIS FOR UNDERSTANDING DIABETIC 

NEPHROPATHY

Massimo Papale,1 Maria Teresa Rocchetti,1,2 Loreto Gesualdo2

1. Core Facility of Proteomics and Mass Spectrometry, Department of Surgery and Medical Sciences, University of 
Foggia, Italy

2. Department of Emergency and Organ Transplantation, University of Bari, Italy 

Disclosure: No potential conflict of interest. 
Citation: EMJ Neph. 2013;1:32-39.

ABSTRACT
The incidence of diabetic nephropathy (DN) is constantly rising in parallel with the prevalence of type 2 
diabetes and has been predicted to double within the next 15 years. Albuminuria is considered the earliest 
putative diagnostic sign of diabetic renal damage but it is poorly associated to the complex histopathological 
picture of glomerular and tubular damage hence, up to now, the accurate diagnosis of the DN requires 
renal biopsy. The identification of new biomarkers of DN is an urgent need since the proper management 
of the DN patients requires early and unbiased diagnosis. The Proteomics approach to the study of the 
human disease allows a large-scale characterisation of the protein content of a biological sample, and its 
application to urine may be a challenging but powerful strategy to identify new DN biomarkers. In this 
review we discuss the main results of a decade of proteomic studies focused on the urinary investigation of 
diabetic nephropathy.
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THE PATHOPHYSIOLOGY OF DIABETES 
AND DIABETIC NEPHROPATHY

Diabetic nephropathy (DN) is the most common 
chronic kidney disease (CKD) in developed countries1 
and the most frequent cause of end-stage renal 
disease (ESRD) worldwide. It has been estimated that 
40% of the patients undergoing renal dysfunction and 
that require renal replacement therapy are affected 
by DN.2 DN is a severe complication of both type 2 
diabetes mellitus (T2DM) and type 1 diabetes (T1D), 
but the incidence of nephropathy is more prevalent 
in T1D primarily due to the fact that, in T2DM, death 
as a result of cardiovascular causes is more common 
than death from renal failure.3,4 The use of renin–
angiotensin system inhibitors and strict glycemic 
control is contributing to slow the incidence of ESRD 
in T2DM patients.5 However, between 2000 and 
2030, the prevalence of T2DM has been predicted to 
increase by 20% in developed countries and about 
50-70% in developing ones.6 This will lead to an 

increase of the incidence of ESRD,7,8 concomitantly 
with the progressively declining rate of mortality 
due to cardiovascular causes.9,10

The primum movens of T2DM complication is 
chronic hyperglycaemia, which initiates specific 
modifications of the electron transport proteins 
by advanced glycation end-products (AGEs) and 
alters normal metabolism by increasing production 
of reactive oxygen species (ROS).11 Hyperglycaemia 
and increased ROS production alter cell homeostasis 
in endothelium and renal cells and impair endothelial 
nitric oxide synthase and prostacyclin synthase, that, 
in turn, contribute to defective angiogenesis and 
persistent expression of pro-inflammatory genes, 
also after glycaemia normalisation.12 These factors, 
together with genetic background and lifestyle, may 
predispose a considerable number of T2DM patients 
to develop DN.

The pathogenesis of DN involves structural changes, 
including glomerular and tubular hypertrophy, with 
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progressive accumulation of extracellular matrix 
components in the glomerular mesangium and 
tubulointerstitium, and changes in podocytes.13-15 
According to the most recent pathologic 
classification of DN,16 the severity of the glomerular 
lesions correlates with the progression of the DN and 
may allow four classes to be distinguished, namely: 
class I (glomerular membrane basement thickening); 
class II (mesangial expansion without Kimmelstiel-
Wilson lesions); class III (presence of at least one 
glomerulus presenting Kimmelstiel-Wilson lesions) 
and class IV (Kimmelstiel-Wilson lesions in at least 
50% of the glomeruli).

At urinary level, microalbuminuria (urine albumin 
excretion 30-300 mg/24h) is considered the 
earliest putative diagnostic sign of diabetic renal 
damage even if it may not correlate with the 
complex histopathological picture of glomerular and 
tubular damage in T2DM.17 In fact, it is not always 
associated with the presence of Kimmelstiel-Wilson 
nodules when renal biopsies are examined,18 thus 
representing a better predictor of cardiovascular 
disease than of renal damage progression.19 Further 
to this, urine contains more than 60 forms or 

fragments of albumin,20 which are not all recognised 
by the routinely immunoassay-based methods 
that ultimately may underestimate the correlation 
between the albuminuria and the renal damage. 
Due to the complexity of DN pathophysiology it 
is necessary to set up unbiased methods that can 
simultaneously detect new sets of biomarkers for 
earlier diagnosis and prognosis of DN.21

The development of renal damage in T2DM patients 
is antedated and/or accompanied by a number of 
molecular changes that may be now identified by 
a number of high-throughput strategies. These 
include the next generation sequencing (NGS) 
approaches for complete sequencing of whole 
genomes,22 transcriptomes,23 and epigenetic 
DNA modifications,24 and also proteomic and 
metabolomics strategies for accurate measurement 
of the entire content of proteins and metabolites of 
biological samples. The aim of the present review is to 
provide a concise overview of the main contributions 
of the proteome science to the identification of 
a set of new urinary biomarkers that could help in 
achieving early diagnosis and better management   
of DN.

Figure 1. Workflow of the biomarker discovery strategy by hightroughput proteomic analysis.
The complex datasets generated by the high-throughput analysis may allow identification of thousands 
of exploratory biomarkers. The bioinformatics management is critically required to select, among the 
exploratory biomarkers, the disease-correlated ones (qualified biomarkers). The management of the 
qualified biomarkers by means of  supervised statistical methods is then essential to setup new classificatory 
models useful for the diagnosis and prognosis of the diseases. Finally this multi-markers pattern should be 
validated, in multicentric cohorts of patients, by routinely immunoassays in order to verify their usefulness 
in clinical practice.
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The Proteomic Approach To The Study of 
Renal Diseases

The term ‘proteomics’ indicates a complex and 
interdisciplinary matter requiring expertise spanning 
from chemistry to biology and bioinformatics, in 
order to reveal the meaning of complex protein 
datasets of a biological sample in physiological 
and pathological conditions. The completion of 
the human genome sequencing together with the 
exponential development of ionisation sources 
(i.e. matrix-assisted laser desorption/ionisation 
[MALDI]25 and electrospray ionisation [ESI])26 and 
bioinformatics tools have rapidly provided new 
technological platforms for the analysis of complex 
protein datasets and the interpretation of the cross-
linked relationship among the differently expressed 
proteins. Starting from the last decade, proteomics 
has been exponentially applied to nephrology 
leading to the identification of a number of putative 
biomarkers that are expected to enter shortly into 
the clinical practice,27 making proteomics a science 
of key interest not only for researchers but also         
for clinicians.

The proteomics analysis of biological samples 
may be pursued by distinct and complementary 
strategies that allow separating the protein mixtures 
and identifying the key disease-related molecules 
by mass spectrometry analysis. Two-dimensional 
gel electrophoresis (2-DE), the most popular gel-
based approach, allows double protein separation 
according to the isoelectric point (pI) and the 
molecular mass (MW)28 and provides, for each 
sample, a characteristic proteomic map showing the 
separated proteins as protein spots or spot trains 
due to the presence of protein post-translational 
modifications (PTMs).

Comparative software analysis of the 2-DE maps 
between pathological samples and matching controls 
may allow identifying differently expressed protein 
spots that are excised from the gel, trypsin digested 
to obtain small peptides mixtures, and analysed by 
mass spectrometry (MALDI-TOF MS, nanoHPLC-
ESI-MS/MS) to obtain the protein ID. Even if highly 
informative, 2-DE proteome underestimates the 
protein complexity of the sample since, for example, 
less expressed proteins, proteins having a molecular 
weight lower than 10 kDa and higher than 250 kDa), 
and transmembrane (hydrophobic) proteins are 
difficult to visualise. Although 2-DE is the only tool 
to depict protein isoforms (train spot), this approach 
may be laborious and expensive without providing 
satisfactory results. Usually, 2-DE is appropriate to 

study a restricted and well-characterised cohort 
of patients in order to identify putative disease-
associated biomarkers, but they need to be further 
validated in larger cohorts of patients to ascertain 
their usefulness as disease biomarkers. 

The development of a number of so-called profiling 
technologies has permitted high-throughput analysis 
of thousands of biological samples and appears 
to be more appropriate for clinical proteomics 
studies since they may combine the multicentre 
collection of numerous samples with their rapid 
analysis in order to identify a new set of biomarkers 
applicable to the general population. The profiling 
technologies include a number of complementary 
strategies, namely liquid chromatography 
(LC),29 capillary electrophoresis (CE),30 and thin-
layer chromatography (TLC)31 coupled to mass 
spectrometry (MS). These strategies can identify, in 
a shortened time, many putative biomarkers ready 
to be validated. However, the complex datasets 
generated by these approaches must be properly 
managed by means of statistical and bioinformatics 
tools to finally allow the recognition of reliable 
disease-specific biomarkers before proceeding with 
their validation.

Recently, the biomarker task force of the National 
Cancer Institute has developed the guidelines for 
biomarkers studies that can be extended to any kind 
of disease.32 In general, a qualified biomarker must 
have a clear clinical significance for the disease or a 
consistent scientific body of evidence must support 
its probable implication in the pathophysiology of 
the disease. On the contrary, the disease-associated 
proteins may be defined as exploratory biomarkers. 
In order to select the qualified biomarkers among 
the exploratory, specific bioinformatics tools must 
be used to select functionally correlated subsets 
and to evaluate their diagnostic power.  The use of 
bioinformatics software, such as String and Ingenuity, 
permits a search for the known interactions of any 
well-characterised protein, and to define a large 
number of potentially interacting molecules for 
each protein.33 This approach may lead to an ever-
expanding network of molecular correlations, 
thus, clinicians having a specific knowledge of the 
pathophysiology of the disease should always check 
the appropriateness of each possible interactome in 
order to restrict the further validation to a sub-set 
of disease correlated biomarkers. The lack of this 
essential contribution may prevent the identification 
of the qualified biomarkers and their use in 
diagnostics. After the identification, the qualified 
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biomarkers should be managed through supervised 
statistical analysis in order to verify if their combined 
evaluation may allow the creation of proteome-
based models useful for improving the diagnostic 
and prognostic power of each of them.

Briefly, this kind of data analysis uses specific 
algorithms34,35 that verify the best association 
among the identified biomarkers to recognise the 
pathologic phenotypes in a “training set” of control 
and disease samples. The optimal pattern is then 
validated against an independent “validation set” 
to confirm its diagnostic utility. The main focus of 
proteome analysis in nephrology is the identification 
of biomarkers useful for the prediction of a 
pathologic phenotype in still asymptomatic patients 
or for an early and accurate diagnosis to permit 
rapid and personalised renoprotective treatment. 
Among biological samples, urine appears the most 
eligible for identifying kidney biomarkers and 
therefore most of the clinical proteomics studies 
in nephrology have been focused on this biological 
sample. In the next paragraphs we will briefly discuss 
the main contribution of the urine proteomics to the 
understanding of DN.

The Urine Proteome: Potentialities and Pitfalls  

Many published studies have discussed and 
emphasised the potentiality of urine as the most 
appropriate biological fluid for biomarkers discovery 
in kidney diseases.36-42 Some of the well-known and 
recognisable urine characteristics include: easy, 
non-invasive accessibility, allowing for multiple 
and abundant collection; the presence of both 
kidney-derived (about 70%) and plasma-derived 
(about 30%) proteins, useful for the identification 
of both systemic and kidney-specific biomarkers; 
the lower complexity and increased stability of 
the urine proteome when compared to that of 
other biological fluids such as serum and plasma, 
ensuring the possibility of analysis, and also 
samples can be collected and subsequently stored 
for long periods.43-45 However, the use of urine for 
proteomic analysis also has some pitfalls such as 
the presence of salts and other interfering agents, 
the higher intra and inter-subject variability,39 and in 
nephropathic patients, the predominant presence 
of serum proteins like albumin that interfere with 
the recognition of the lower expressed proteins and 
may prevent the identification of more sensitive and 
specific biomarkers.

Since proteomics was firstly applied to the analysis 
of urine samples, it has been realised that the initial 

aim of any clinical proteomics study must be the 
definition of standardised procedures to reduce the 
effect of confounding factors on the reproducibility 
of the proteomic data. Our group and other 
authors have contributed to the realisation of this 
objective through the publication of a number of 
methodological works,39,45-49 which have allowed for 
the planning of more accurate biomarker discovery 
studies in following years. The importance of this 
aspect is considered a central issue for the nephrology 
community at national, European (European Kidney 
and Urine Proteomics (EuroKUP) and international 
level (Human Kidney and Urine Proteome Project 
(HKUPP) through the creation of groups of study or 
consortia involved in the standardisation of consensus 
procedures for collection, storage and analysis of 
urine by proteomics approaches. It is expected 
that this attempt to spread a growing awareness 
of the importance of adopting standardised and 
comparable protocols among clinicians, nursing 
staff, and researchers will contribute to set clinical 
studies of major impact for the identification of 
reliable biomarkers. 

Milestones In Urine Proteomics Applied To 
Diabetic Nephropathy

Since 2004, when Mischak and coworkers50 
described three polypeptide patterns able to 
recognise ‘normal’, ‘diabetic’, and ‘diabetic patients 
with renal damage’, about 15 original works dealing 
with the identification of urinary biomarkers of DN 
have been published. Even if this proof-of-concept 
work lacked some details on the criteria that are 
now considered essential for the definition of a 
qualified set of biomarkers (i.e. the validation in an 
independent test set or the bioinformatics analysis 
to establish the functional association between the 
biomarker and the disease), it has been successful 
in showing, for the first time, that urine proteomics 
could provide new important information about 
kidney disease in T2DM patients.

In the following years, several well-designed works, 
based primarily on urine screening by CE-MS and 
SELDI-TOF/MS, have allowed for the identification 
of new promising biomarkers for early diagnosis 
and prognosis of DN. Rossing et al.51 applied CE-
MS analysis to T1D patients, describing a panel of 
65 urine biomarkers able to recognise DN with 97% 
sensitivity and specificity. Their results were further 
validated in a multicentre independent cohort52 of 
T2DM patients, providing the first evidence that CE-
MS urine proteome profiling may adequately identify 
subjects with DN in the general population. About 
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half of the polypeptides included in the proteomic 
pattern were identified as collagen fragments, thus 
suggesting that changes in the collagen metabolism 
may be closely linked to the renal damage in 
T2DM. Furthermore, Good and coworkers53 

reported a CE-MS based classifier including 273 
urinary small peptides (namely ‘Classifier273’) that 
seem to be highly specific and sensitive for CKD, 
irrespective of the underlying pathology. In a very 
recent work, Zurbig et al.54 demonstrated that this 
classifier was more specific and sensible than urine 
albumin excretion rate (UAER) in predicting the 
occurrence of the microalbuminuria in T1D and 
T2DM normoalbuminuric patients. These data, even 
if limited to a restricted number of diabetic patients, 
would suggest that the urine proteome might allow 
the identification of DN risk patients, thus permitting 
early onset of renoprotective treatments to slow the 
progression of the renal damage.

SELDI-TOF/MS analysis has also been extensively 
used for identifying urine biomarkers of DN. For 
example, Dihazi et al.55 identified and validated 
among 100 differently excreted SELDI peaks, two 
mass peaks corresponding to B2-microglobulin 
and ubiquitin ribosomal fusion protein, which 
were selectively and differently excreted in 
nephropathic diabetic patients. More recently, Wu 
et al.56 reported 300 differently excreted urine mass 
peaks among T2DM patients with normo, micro 
and macroalbuminuria, and described a four-peak 
pattern useful for recognising DN with 88% and 97% 
sensitivity and specificity, respectively. Interestingly, 
in these studies the progression of renal damage in 
T2DM was expressed only according to the albumin 
excretion rate. 

Our group also performed a comparative SELDI 
analysis of the urine proteome,57 taking into account 
a more accurate selection of the T2DM patients 
since only diabetic patients with biopsy-proven 
Kimmelstiel-Wilson lesions were included in the DN 
group. We confirmed the data of Dihazi, concerning 
the increased excretion of B2-microglobulin in DN, 
and found significant deregulated excretion of the 
ubiquitin as potential biomarkers of DN. Further, we 
confirmed the specificity of the identified biomarkers 
in an independent test set of T2DM patients having 
biopsy-proven non-diabetic chronic kidney disease 
(CKD). It is worth noting that both CE-MS and 
SELDI profiling are able to specifically analyse low 
molecular weight proteins while being ineffective to 
cover the medium and high size proteome.

A high-throughput approach that allows a more 
accurate coverage of the proteome is the so-called 
shotgun proteomics analysis.29,58 In this approach, 
the proteins of a given biological sample are 
proteolytically digested into peptides and separated 
by bidimensional liquid chromatography prior 
to mass analysis (LC/MS). The ensuing peptide 
masses and sequences are then used to identify 
corresponding proteins by database search.59 
Recently, Jin et al.60 employed the urine LC/MS 
analysis to search for specific DN biomarkers. 
Specifically, these authors used isobaric tags  for 
relative and absolute quantitation (iTRAQ)61 to select 
and quantify differentially excreted urinary proteins 
in pooled urine samples of microalbuminuric versus 
normoalbuminuric diabetic patients. This analysis 
allowed the recognition of 196 differentially expressed 
proteins, including 10 (qualified) biomarkers that were 
identified by bioinformatics analysis. The application 
of a multiparametric pattern, encompassing three of 
the ten qualified biomarkers, allowed identification 
of microalbuminuric patients with about 92% 
sensitivity and specificity.

It is interesting to consider that most of the urine 
proteomic studies have investigated only the soluble 
urine fraction. Indeed, recently, urinary exosomes have 
been receiving increasing attention as a new source 
of potential biomarkers.62 Exosomes are 30-100 nm 
vesicles, derived from the endosomal compartment 
and released via fusion of multivesicular bodies with 
the plasma membrane.63 They comprise of a ceramide 
and cholesterol-rich lipid bilayer membrane,64 an 
array of membrane and cytosolic proteins,62 and 
selected RNA species.65 These vesicles are a rich 
source of biomarkers because they are released from 
every segment of the nephron, including podocytes, 
and are finally excreted in the urine.

Very recently, Raimondo and coworkers66 have 
published an interesting proof-of-concept work on 
the proteomic analysis of urine exosomes in Zucker 
Diabetic Fatty (ZDF) rats. They profiled the urinary 
exosomal protein content of non-diabetic lean rats 
and ZDF rats with normo or microalbuminuria. By 
this approach, 280 differently expressed exosomal 
proteins were identified and categorised according 
to the function and subcellular localisation. They 
demonstrated that incipient renal disease correlated 
with increased cytoplasmic and cytoskeletal proteins 
in the urine exosomes, and that the identified proteins 
were mainly involved in metabolic and immunity 
processes. The above results demonstrate that the 
proteomic analysis of the urinary exosomes, together 
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