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ABSTRACT

Recovery from ischaemic stroke is determined in the acute phase by the lesion impact of ischaemia  
and subsequently, by functional and structural network changes in the spared brain tissue.  
Neurorehabilitation supports the restitution of function using repetitive, learning-based and, more recently, 
technology-based training strategies. 
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PROGNOSIS OF ISCHAEMIC STROKE 

Ischaemic stroke is an acute disease and one of  
the leading causes of persistent disability in  
Western countries.1 It results from an interruption  
of cerebral blood supply, with subsequent  
ischaemic brain damage bearing a dubious  
prognosis. Recovery of the deficits of motion, 
sensation, cognition, or emotion resulting from  
stroke, depends on cerebrovascular factors and  
mechanisms of tissue–remodelling, ranging 
from hours to many months.2,3 Thrombolysis has  
opened new avenues to substantially reverse 
the neurological deficits in the acute phase 
after stroke.4-6 However, even large brain infarcts 
may lead to only minor and transient deficits 
that resolve completely within a couple of 
hours when they spare brain areas critical for  
motion, somatosensation and vision. This is  
illustrated in a patient who presented with  
transient ischaemic attack consisting of a two-
hour period of abnormal sensation of her left hand  
and arm, and in whom magnetic resonance  
imaging (MRI) showed a large territorial infarct of  
cardioembolic origin (Figure 1). Thus, 
minor clinical symptoms may be caused by 

substantial brain lesions. However, this example 
also shows that the recovery from stroke 
commences early after the ischaemic event. The  
most important mechanism for early recovery 
is related to rapid arterial recanalisation and 
reperfusion of brain tissue. In the acute phase 
of stroke it is difficult to predict the degree of  
ultimate recovery, since even small infarcts may  
be caused by severe and life threatening diseases  
of the heart.7 Moreover, a low socioeconomic  
status impairs the rate of functional recovery.8  
Finally, while longitudinal observations have  
shown that the neurological state by day 4  
predicts the long-term neurological outcome,9,10 
there is good evidence that minor neurological 
deficits remain that become apparent only upon 
proper testing.11,12

Recent developments in neurorehabilitation 
have aimed at tailoring rehabilitation methods 
depending on the deficit pattern of the patients. 
Neurorehabilitation approaches vary and may  
include very early mobilisation,13 anti-gravity  
support for walking,14 basic arm training, arm 
ability training,15 constraint movement therapy,16 
somatosensory discrimination training,17 and  
language therapy.18 Learning-based approaches  
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are advocated, consistent with learning-
dependent plasticity, and with the speciality of  
neurorehabilitation and its focus on the restoration 
and maximisation of functions.19 It needs to be 
realised, however, that activities of daily living  
usually recover within 26 weeks after the stroke 
insult and are often accompanied by compensatory 
hand use.20,21 This adaptation of the brain is 
functionally relevant but essentially not equivalent 
to cerebral plasticity affording restitution of 
function. Accordingly, the recovery potential of a 
stroke patient includes compensatory adaptation 
as well as functional restitution in the optimal and 
true sense of cerebral plasticity. The impact of 
the lesion on brain networks and knowledge of 
viable brain networks with capacity for plasticity is  
critical to target restorative stroke rehabilitation  
to the individual.22

RECOVERY POTENTIAL AFTER STROKE 

The recovery potential is determined largely by 
the location and the volume of ischaemia and the 
cerebral infarct as determined on MRI.3,23-28  Large 
brain lesions or small subcortical white matter 
lesions may affect multiple brain systems, resulting 
in complex neurological syndromes such as  
apraxia, spatial neglect or Gerstmann syndrome.29-31  
In particular, measures of fibre tract damage or 
cortical activations have been found to explain the 
recovery of motor,23,32-35 language, somatosensory, 
and visual functions.36-39 For example, the extent 
to which an individual patient will achieve good 
recovery of the upper limb function depends, in 
part, on the integrity of the corticospinal tract 
(CST) as determined by transcranial magnetic 
stimulation (TMS), on MRI, or with diffusion  
tensor imaging (DTI).35,40,41 On clinical 
grounds, the degree of residual proximal 
arm movements determines the degree of 
recovery of hand function.42 However, using 
clinical, neurophysiological and neuroimaging 
measures of CST integrity, a stepwise algorithm  
has been developed to predict upper limb function 
at the subacute phase.40 

Beyond structural changes there are also functional 
changes in the brain following stroke. Regardless 
of subcortical or cortical location of infarction, 
these changes affect the perilesional tissue and 
the interhemispheric balance of activity.43-45 Using 
paired-pulse TMS it was found that, within the  
first 7 days after a brain infarction, there is an 
enhanced cortical excitability in the cortex  
adjacent to the brain lesion but also in the 
contralateral hemisphere.46-48 Notably, the enhanced 
perilesional excitability was transmitted to the  
intact motor cortex in the contralesional  
hemisphere. In keeping with these observations, 
functional MRI (fMRI), performed approximately 2 
days after stroke, revealed an area in the ipsilesional  
postcentral gyrus and posterior cingulate gyrus  
that correlated with motor recovery approximately 
3 months after stroke.49 Furthermore, restoration  
of hand function, 3 months after stroke,  
was associated with highly lateralised activation  
of the affected sensorimotor cortex in fMRI, which 
developed over time.50,51 In patients with a stable 
deficit in the chronic stage after stroke, a reduced 
strength of the precision grip of the affected hand 
was associated with an enhanced activation of the 
contralateral motor cortex in a demanding task 
involving the affected hand, while more severely 

Figure 1. Transient sensory disturbance of the left 
hand that disappeared entirely within 2 hours,  
due to a large cardioembolic ischaemic brain  
infarct in the right cerebral hemisphere in a  
72-year-old woman. 
This coronal FLAIR-MRI was taken 6 weeks after 
the incident, showing involvement of the superior 
temporal gyrus and large parts of the inferior parietal 
lobule. The somatosensory cortex was spared. 
Note also the slight bilateral white matter changes 
typical of vascular encephalopathy probably due to 
inconsistent antihypertensive treatment.
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affected patients had greater motor cortex  
activation in the affected hemisphere.52

Apart from local activations, there is a pathological 
interhemispheric interaction between the ipsi and 
contralesional motor cortex as well as between 
the ipsilesional supplementary motor area (SMA) 
and contralesional motor cortex in patients with a  
single infarct lesion. This was shown by network 
type of analysis of functional imaging data.53,54 In 
unilateral movements of the affected hand there  
was an inhibitory influence from the contralesional  
to the ipsilesional motor cortex, which correlated  
with the degree of motor impairment.54 The 
importance of interhemispheric interactions and 
functional brain networks is further highlighted 
by evidence that disruption of interhemispheric 
connectivity predicts attention and motor 
performance deficits after stroke.55

Motor network connectivity strength was shown 
to correlate with motor outcome after stroke.56 
In chronic stroke patients, DTI-derived measures  
of transcallosal motor fibres, as well as the 
components of the ipsilesional corticospinal tract, 
could be used to explain the therapeutic response 
to rehabilitation: the more the diffusivity profiles 
resembled those observed in healthy subjects,  
the greater a patient’s potential for functional 
recovery.57 While these findings need to be 
substantiated by further investigations, they 
accord with the evidence from functional imaging, 
suggesting that the concerted action of both  
cerebral hemispheres is required for recovery. It is 
worthy of note that upper limb function is governed 
by a largely lateralised sensorimotor system, 
which allows identifications of the contribution of 
ipsilesional and contralesional changes in the motor 
and sensory system as well as network related 
changes in the brain contributing to recovery.

APPROACHES OF 
NEUROREHABILITATION 

There are numerous reports about rehabilitative 
approaches to improve the neurological 
deficit following stroke.58-60 By these measures, 
cortical and cortico-subcortical reorganisation  
(cerebral plasticity) is aimed at being enforced. 
The behavioural effects and neural mechanisms 
underlying evidence-based movement rehabilitation 
have been reviewed.40 To date, most studies have 
been conducted in the chronic phase of recovery. 
Interventions that have been shown to improve 
motor function in the upper limbs and to influence 

brain activation in functional brain imaging  
and reorganisation, include constraint-
induced movement therapy and task-specific 
interventions.58,61,62 Notably, the intensity of 
the training rather than the type of targeted 
training appears to determine long-term 
improvement of motor function of the upper  
limbs.63,64 Treadmill training was found to improve 
walking velocity, which correlated with brain 
activity in the posterior cerebellum in fMRI related 
to movement of the paretic limb.65 Successful 
hand shaping and grasping of objects did not 
occur unless there was sufficient volitional control 
of finger and thumb extensions.66 An important 
and largely neglected aspect of hemiparesis is 
the presence of spasticity that typically builds up 
progressively after stroke-counteracting voluntary 
movement. If botulinum toxin was combined with 
repetitive bilateral arm cycling training in chronic 
stroke patients, spasticity could be reduced.  
This was reflected clinically by a profound 
reduction of spasticity and a change of the cerebral  
activation pattern as evident from fMRI.67 

The concept of ‘learned non-use’ was implemented 
in the so-called ‘constraint-induced’ therapy. It  
has been shown to be successful particularly 
when applied in the chronic state to moderately  
affected patients.68,69 This beneficial effect of 
constraint-induced movement therapy is likely to 
be composed of focussing the patient’s attention 
to the affected side. Imposing repetitive training 
results in improved motor function and enhanced 
functional brain activation in the partially 
damaged sensorimotor cortex.32,69 Similar effects 
were achieved with bihemispheric direct cortical 
stimulation (DCS), which activated the affected 
motor cortex and inhibited the contralesional  
motor cortex.70 

Mental training can also result in better functionality  
of the upper extremity and in greater gains of  
activities of daily living than standard 
physiotherapy.71,72 FMRI revealed that motor imagery 
activated a widespread network of cerebral areas 
in motor, premotor and parietal cortex in both 
cerebral hemispheres.56,72 In controlled trials, early 
after stroke, mirror therapy was found to improve 
the neurological status immediately after the 
intervention and at long-term follow-up.73,74 Also, 
there is a transfer effect of the highly skilled hand  
to the affected hand in stroke patients.75

Based on the knowledge of postlesional 
pathophysiology it has been hypothesised that 
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the stimulation of the human brain can augment 
the effect of rehabilitation. The idea is to affect 
the threshold of cortical excitability which is 
abnormal after stroke. In fact, anodal stimulation  
of the affected motor cortex was found to  
augment motor skill acquisition.76 Conversely, 

application of 1 Hz repetitive TMS of 10 minutes 
duration to the contralesional motor cortex, which 
down-regulates the contralesional motor cortex, 
improved the kinematics of finger and grasp 
movements in the affected hand.77 This resulted  
in overactivity in the contralesional motor and 

Figure 2. The Rehabilitation Gaming System. 
Upper left panel: Virtual reality environment showing the two arms of the avatar and a sphere flying  
towards the viewer. 
Lower panel (from left to right): Activation areas related to movement imagery in healthy volunteers  
located in the left anterior prefrontal cortex, the left inferior frontal gyrus (IFG), the left inferior parietal 
lobule, and the supplementary motor area (SMA). 
Upper right panel: Strong activations during imagery in the left SMA and left IFG, no activation during 
simple observation, no change during actual catching in the left IFG. 
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