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MRI Markers of Disability

Professor Maria Pia Sormani

MRI-derived markers of MS are enabling a  
deeper understanding of the pathophysiology 
of MS. They provide prognostic and diagnostic  
markers to improve clinical practice, and can 
detect changes in the brain and spinal cord,  
indicative of clinical improvements due to disease-
modifying agents. Surrogate endpoints are often 
used in clinical trials when the treatment goals 

of an intervention are difficult to assess, and 
when modification of the surrogate marker by 
the intervention is predictive of its efficacy. The 
nature of the disability in MS necessitates the use 
of a surrogate marker in clinical trials: disability is 
very difficult to measure, it is slow to progress, and 
it is irreversible – so allowing trial participants to 
continue on a potentially ineffective intervention is 
not justifiable if a surrogate marker is available.
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MEETING SUMMARY

The meeting outlined the evidence that the use of magnetic resonance imaging (MRI) markers as  
surrogate endpoints in clinical trials of relapsing-remitting multiple sclerosis (MS) is both valid and  
informative. The mechanisms of action of teriflunomide (Aubagio®) and alemtuzumab (Lemtrada®), both 
treatments for relapsing-remitting MS, were discussed, and their Phase II and III safety and efficacy data 
were reviewed alongside the MRI-derived outcome measures.   
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For a surrogate marker to be valid, it must 
capture the full effect of treatment on the clinical 
outcome. In two independent meta-analyses, this  
requirement was found to be met for MRI lesion 
changes (measured with conventional tesla [T]2- 
weighted imaging) as a surrogate marker of  
reduced relapse rates.1,2 The first analysis  
compiled all randomised trials in relapsing- 
remitting MS for the period prior to, and  
including, 2009; the second analysis included all  
studies completed since that date until 2013.  
Both revealed that while there may be poor 
correlation at an individual level between T2  
lesion size and relapse rate, there was a very strong  
and consistent correlation between reductions in 
lesion size and reduced relapses due to treatment.

Lesions measured with T2-weighted imaging have 
a weaker, though still significant, relationship with 
disability progression in MS.3,4 For this clinical 
outcome, a recently published meta-analysis, which 
included 13 clinical trials on relapsing-remitting  
MS, found that brain atrophy (change in brain 
volume) and T2 lesion size entered together as 
predictive variables in a regression model can 
account for 75% of the variance in treatment  
effects on disability progression.5 This finding 
suggests that by including both surrogate markers  
in the analysis, variability in each marker’s  
relationship with a particular drug has less impact  
on the overall model. For example, disability 
progression after treatment with teriflunomide was 
unrelated to brain atrophy change, but was closely 
predicted by the T2 lesion number reduction. In 
contrast, disability progression decreased after 
alemtuzumab was predicted reliably by brain 
atrophy reduction, but to a lesser extent by T2  
lesion number change.

For a surrogate marker to be valid across  
individual patients, it must pass a set of four  
statistical criteria, commonly referred to as the 
Prentice criteria.6 These dictate that the treatment 
must have an effect on the surrogate; the  
treatment must have an effect on the clinical 
outcome; the surrogate and the clinical outcome 
must be correlated; and this correlation must 
capture the variance in the clinical outcome due 
to the treatment. This last criterion also offers a 
method to evaluate the quality of the surrogate;  
the greater the proportion of the treatment effect 
that is explained by the surrogate, the more 
‘perfect’ the surrogate marker. Using the methods 
just described, the combination of MRI lesions 
and relapse rate was evaluated as a surrogate  

endpoint for reduced disability worsening in MS  
due to treatment with interferon β-1a (IFNb1a).7  
More than 60% of the variance in the treatment 
effect was accounted for by each endpoint 
in isolation, but when combined, 100% of the 
variance could be explained. This suggests that  
the combined endpoints, both of which are  
measurable over the short term, are a useful  
surrogate for disability progression over the  
long term. 

A similar analysis was performed to evaluate the 
same combination of endpoints, as well as the  
extent of brain volume change, as surrogate  
markers for the reduction in disability progression 
after treatment with fingolimod.8 Taking the  
potential surrogate endpoints by themselves, the 
separate regression models revealed that reduction 
in the mean number of MRI lesions accounted  
for around half of the treatment effect on  
disability, and around 60% and 23% of the  
variance in the treatment effect was shared by the 
reduction of relapses and the reduction in brain 
atrophy, respectively. When combined, it was  
found that MRI lesions did not have any unique 
predictive power for the reduction in disability 
progression due to fingolimod. However, relapses 
and brain volume change could account for 73% of 
the variance in the treatment effect. The analyses 
described suggest that the effect of a particular 
treatment on disability progression in relapsing-
remitting MS can be explained by a reduction of  
MRI lesions and/or brain atrophy accumulation,  
but the degree to which these markers are  
appropriate as surrogate endpoints will be drug-
specific. Further studies (with standardised 
methodologies) are needed to strengthen the  
role of MRI markers as surrogates for disability in MS.

Teriflunomide: Efficacy by MRI Measures

Professor Andrew Chan

Teriflunomide inhibits the mitochondrial enzyme 
dihydroorotate dehydrogenase (DHODH), which is  
a key enzyme for de novo pyrimidine synthesis, 
itself in high demand by activated and  
proliferating lymphoblasts.9 In MS, teriflunomide 
is thought to reduce the activity of proliferating 
T lymphocytes and B lymphocytes, thereby 
diminishing the overall inflammatory response. 
The drug may also exert its effects via DHODH-
independent pathways, which presumably include 
inhibiting protein tyrosine kinases, altering  
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cytokine production, and modulating the  
expression of cell-surface molecules.9 There have  
been two pivotal Phase III trials (TEMSO10 and 
TOWER11) of teriflunomide in relapsing MS, each 
showing a dose-dependent reduction of the  
relapse rate and the reduction in disability 
progression. An extension phase of TEMSO  
revealed that disability progression was stabilised 
with teriflunomide over 9 years of the study. 
Furthermore, in a trial (TOPIC12) recruiting very  
early stage patients with clinically isolated  
syndrome (a single episode of demyelination) 
teriflunomide reduced the risk of conversion to 
clinically definite MS (i.e. the occurrence of a  
second relapse). This efficacy was achieved across 
all studies without major short or long-term  
safety signals.13 

The TEMSO and TOPIC studies, as well as the 
preceding Phase II study,14 also included MRI 
imaging as an outcome parameter. In the Phase 
II trial, the number of unique active lesions (i.e.  
T1 gadolinium [Gd]-enhancing lesions and the 
number of unique new or enlarging T2 lesions) 
was clearly reduced over 36 weeks. In the Phase III  
TEMSO trial there was a dose-dependent  
reduction in total lesion volume after 108 weeks 
of teriflunomide treatment10 that was primarily 
dependent on T2-hyperintense lesion volumes, 
but with a significant independent contribution  
from the T1-hypointense lesion volumes.15  
More traditional MRI measures also favourably  

responded to teriflunomide over placebo in a dose-
dependent manner. With the teriflunomide dosage  
of 14 mg, which is approved by EMA, there was 
an 80% reduction in T1 Gd-enhancing lesions10,15 
and a 69% reduction in the number of combined  
unique, active T1 and T2 lesions. Global brain  
atrophy, defined as total parenchymal volume  
change, also progressed more slowly after 
teriflunomide compared with placebo; this 
was largely dependent on the impact on white  
matter.15,16 Furthermore, in a post-hoc analysis of  
the TEMSO trial data, it was found that there were 
more patients free of both clinically and MRI-
measured disease activity after teriflunomide 
compared with placebo (Figure 1).17 

In the TOPIC study, treatment of patients at a 
very early stage of MS with teriflunomide reduced 
the number of Gd-enhancing lesions by 59%  
and reduced the volume of T2-hyperintense  
and T1-hypointense lesions.12 These findings were  
consistent across sex, age, and baseline lesion  
loads.18 In summary, clinical efficacy on disability 
progression and relapse rate are corroborated 
by MRI-based outcome measures. In the future, 
MRI may also be able to inform our measurement 
of drug efficacy in more detail in order to identify 
non-responding patients in need of an alternative 
approach. However, there are many aspects of  
these measures that need to be examined  
further if we are to fully understand their  
biological significance.

Figure 1: Teriflunomide increased the proportion of patients free from disease activity.17

MRI: Magnetic resonance imaging.

Post-Hoc Analysis of Patients Free of Disease Activity

Placebo       Teriflunomide 14 mg

P
ro

p
o

rt
io

n 
o

f 
P

at
ie

nt
s,

 %

90

80

70

60

50

40

30

20

10

0

49.3

60.6

76.3
82.7

24.8

40.5

14.3

22.9

Relapse Free Disability 
Progression Free

MRI Activity Free Disease-Free 
Component



 NEUROLOGY SUPPLEMENT  •  February 2015   EMJ  EUROPEAN MEDICAL JOURNAL  NEUROLOGY SUPPLEMENT  •  February 2015     EMJ  EUROPEAN MEDICAL JOURNAL 4 5

Effects of Lemtrada® Through the Lens 
of Radiological Markers

Professor Hans-Peter Hartung

Alemtuzumab (Lemtrada®) is a humanised 
monoclonal antibody licensed for the treatment of 
MS that selectively targets CD52, a protein that is 
abundant on the surface of T and B lymphocytes, 
monocytes, and macrophages. It has a unique 
dosing regimen in that it is administered on 
five consecutive days at baseline and then on 
three consecutive days after 12 months. Due to 
its selective depletion of lymphocytes, innate  
immune cells such as neutrophils, monocytes, 
eosinophils, and basophils are apparently  
unaffected,19 while there is a large and sustained  
inhibition of CD4 T cells.20 After administration,  
reconfiguration of the immune system occurs, so  
that during repopulation of the T cell pool there  
is a predominance of ‘T regulatory’ cells21,22 that 
theoretically counteract any auto-aggressive or 
inflammatory cell population. There is also a return  
of a memory phenotype T cell population.23,24  
None of these responses are seen with IFNb1a, 
and it is this change in the balance of the  
immune system after alemtuzumab treatment that 
can help rationalise its durable effects.24 

Amongst the studies conducted in the  
clinical development program, alemtuzumab was  
compared to an active comparator (high-dose  
high-frequency IFNb1a) in a Phase II trial,25 which 
included an ongoing, long-term extension study  
that followed patients over 5 years. Two Phase 
III trials, also comparing alemtuzumab to  
subcutaneous IFNb1a have also been completed, 
one looking at treatment-naïve patients,26 and the 
other at patients with continued disease activity 
despite immunomodulator therapy.19 The co- 
primary endpoints for all studies were annualised 
relapse rates (ARR) and the time to sustained 
(6 months) accumulation of disability (SAD). In 
both Phase III trials there was a markedly greater 
reduction in the ARR after 12 mg alemtuzumab 
compared with IFNb1a.19,26 There was also trend-
level evidence for superiority of alemtuzumab for 
decreasing the frequency of SAD in treatment-
naïve patients,26 which was statistically significant  
in treatment-experienced patients.19 In the latter 
study, a 42% reduction in the number of patients  
with SAD was observed. Furthermore, in the 
extension phases of these studies the efficacy was 
shown to be sustained in both treatment-naïve27  
and treatment-experienced patients.28 

The MRI-based outcome measures (Gd-enhancing 
lesions, new T1 lesions, and new or enlarging  

Figure 2: Alemtuzumab was superior in reducing the rate of brain volume loss versus subcutaneous 
interferon β-1a (IFNb1a).34,35
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T2 lesions) in the Phase III trials also  
favoured alemtuzumab. A majority of patients on  
alemtuzumab were free from new lesions 3 years 
after trial onset. This outcome was achieved even 
though 82% of the patients had not received 
alemtuzumab for the latter 2 years of the trials,29 and 
there was no significant difference in the number 
of lesions in Year 2 compared with Year 3.30 In both 
the treatment-naïve31,32 and treatment-experienced 
patients32,33 alemtuzumab slowed the yearly rate 
of brain volume loss over 3 years compared with 
IFNb1a, with atrophy rates being closer to the  
normal age-related loss seen in healthy individuals 
(Figure 2).34,35 Furthermore, after approximately 
2 years, it was shown that more patients on 
alemtuzumab were free from MRI activity, as 
evidenced by the  absence of both Gd-enhancing 
and new or enlarging T2-hyperintense lesions.29,30 

The rate of adverse events with alemtuzumab 
(12 mg), including those leading to treatment 
discontinuation, was generally similar to that with 
IFNb1a, and the adverse event profile was similar 
between treatment-naïve patients and patients  
who relapsed on prior therapy.25,26 In the extension 
study, the adverse event profile was similar to 

that seen in the core phase of the studies,27,28  
and the rate of overall adverse events, including 
infections, decreased over time.36 There is a known  
risk for the development of thyroid disease  
after alemtuzumab treatment. The cumulative  
proportion of thyroid adverse events was  
estimated to be 36% at 48 months following 
first alemtuzumab exposure,37,38 and the annual  
incidence of thyroid events following alemtuzumab 
treatment peaked in Year 3 and declined in  
Year 4.37,39,40  

In summary, alemtuzumab has demonstrated 
superior clinical efficacy when compared with  
high-dose subcutaneous IFNb1a for reducing 
both ARR and SAD in MS. The majority of  
alemtuzumab-treated patients in the pivotal  
Phase III trials were free of MRI activity in  
their third year of follow-up, and alemtuzumab  
continued to slow the yearly rate of brain volume  
loss over 3 years. These findings provide strong 
support for the durable efficacy of alemtuzumab 
in both treatment-naïve patients and patients  
who relapsed on prior therapy, particularly 
given that the majority of patients received no  
treatment for 2 years.
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