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ABSTRACT

In the past decade, imaging has advanced to become a crucial tool in fundamental and biomedical  
research and it has become increasingly important to be able to image whole organs with single cell 
resolution. Light sheet fluorescence microscopy, also called selective plane illumination microscopy or 
ultramicroscopy, provides a high resolution in transparent and intact whole organs. By the application of a 
thin light sheet, only a defined slice of the specimen is illuminated and the fluorescence signal is detected  
by an objective perpendicular to the specimen. By moving the specimen vertically through the laser,  
a z-stack is acquired which corresponds to an optical sectioning without physical disruption of the  
specimen. The data can further be reconstructed to a three-dimensional volume and analysed in its entire 
complexity in micrometre resolution.

This article reviews the prerequisites for successful light sheet fluorescence microscopy, in terms of tissue 
preparation and optical clearing, and highlights recent advances and applications in the context of basic 
and biomedical research, with special focus on the central nervous system of rodents.

Keywords: Light sheet fluorescence microscopy (LSFM), ultramicroscopy, biomedical research,  
optical clearing.

INTRODUCTION TO LIGHT SHEET 
FLUORESCENCE MICROSCOPY 
AND ESTABLISHED IN VIVO TOOLS

In biomedical research, as well as during the  
preclinical development of novel drugs and  
treatment regimens, in vivo and ex vivo imaging 
techniques have advanced to become major 
research tools used to address many important 
questions. A high spatial resolution is needed to 
investigate morphological changes and interactions 
at the cellular level, especially in preclinical 
disease models of the central nervous system 
(CNS), such as brain tumours, Alzheimer’s disease,  
or multiple sclerosis. Classical non-invasive in vivo 
imaging tools such as computed tomography (CT), 

magnetic resonance imaging (MRI),1,2 positron 
emission tomography, or single-photon computed 
tomography (SPECT),3 provide a spatial resolution 
in the sub-millimetre to millimetre range in living 
specimens. Yet, this resolution is not high enough  
to study single cells involved in disease pathology.  
In vitro and post mortem ex vivo microscopy 
techniques such as confocal or two-photon 
microscopy, which can also be applied in vivo, 
achieve a resolution of a few micrometres but 
involve the deterioration of the investigated 
sample required to be cut into thin slices prior 
to the imaging procedures.4 In the case of in vivo 
two-photon microscopy, a method that involves 
laborious sample preparations, clear subcellular 
resolutions of living organisms can be achieved. 
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However, the penetration depth is limited to 
~200 µm (in vivo) to 500 µm (ex vivo), restricting  
the volume of investigation to the surface of the 
organ.5,6 Furthermore, problems of confocal and  
two-photon microscopy for in vitro and in vivo 
imaging are photobleaching and phototoxicity; 
optical clearing of organs allows for deeper 
penetration depths and when investigating cleared 
organs using light sheet fluorescence microscopy 
(LSFM), photobleaching and phototoxicity are of  
no concern.

In the past decade, LSFM has evolved to become  
the new imaging method of choice in biomedical 
research as it overcomes the issues of poor spatial 
resolution and limited penetration depth combined 
with the retained integrity of the specimen.7  
In LSFM, the sample is illuminated by a thin light 
sheet perpendicular to the direction of observation. 
Moving the sample through the light sheet results 
in a stack of two-dimensional images; this can 
be referred to as optical sectioning. Importantly,  
the laser only illuminates the tiny sheet of a 
given specimen presently in focus. Therefore, the 
surrounding areas cannot outshine the imaged area 
and out of focus regions do not cause stray light.8 
For the illumination of larger organs, such as whole 
mouse brains, two opposite lasers are commonly 
used for imaging. By using two light sheets, the 
sample can be uniformly illuminated without loss 
of light that would cause insufficient illumination 
and loss of information. Observation of samples 
often takes place in a liquid or gas environment.  
In ultramicroscopy (UM), whole organs can be used, 

ranging from several millimetres to centimetres in 
size. For a three-dimensional (3D) reconstruction of 
an organ or tissue using UM, hundreds or thousands 
of single images are collected in one measurement 
and create a picture of the whole specimen.9

The fundamental technique of LSFM was originally 
developed under the designation of UM by Richard 
Adolf Zsigmondy and Henry Siedentopf a century 
ago; it was awarded the Nobel Prize in 1925.10 The 
constant development of LSFM from the 1960s up 
until today’s powerful tool was comprehensively 
reviewed by Peter A. Santi.11 However, two major 
contributions were made by the groups of 
Ernst Stelzer,7 who invented the selective plane  
illumination microscopy (SPIM),12 and Dodt et al.,13  
who applied optical clearing of specimens, paving  
the way for present applications. Today, this  
advanced technique represents a powerful tool to 
image total organs, whole animals (e.g. mouse 
embryos) or tissues and investigate the volume of 
interest in 3D reconstruction which allows for optical 
sectioning.14,15 The technique can also be used for  
in vivo applications in transparent specimens like  
fruit fly embryos or zebrafish. Other applications  
for LSFM are live imaging of 3D cell cultures,  
e.g. cellular spheroids, epithelial sub-organs, or stem 
cell organoids.14,16,17 Figure 1 illustrates a schematic 
description of a commonly used UM setup, showing 
the bidirectional laser excitation of the sample.  
Different filter settings can be applied for the  
excitation of the sample (Figure 1A). In this 
particular example derived from LaVision BioTec`s  

Figure 1: A schematic description of a commonly used ultramicroscopy-setup showing the bidirectional 
laser excitation of the sample. 
Different filter settings can be used for the excitation of the sample (A). The objective enters the cuvette 
and detects the emitted fluorescence perpendicular to the sample (B and C). With this setting, strong 
fluorescence signals from the specimen, in this case from the mouse brain (C), are clearly detectable.
Copyright LaVision BioTec GmbH, Bielefeld, Germany.
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UltraMicroscope II, six filters can be incorporated 
into the microscope in order to measure different 
fluorescent signals in parallel. The objective enters 
the cuvette and detects the emitted fluorescence 
perpendicular to the sample (Figures 1B and C). 
With this setting, strong fluorescence signals from 
specimens of interest, in this case mouse brains 
(Figure 1C), are clearly detectable. 

Here, we will focus on the application of LSFM 
in biomedical research with optically cleared 
specimens. A recently published article by Pan  
et al.18 shows a newly developed clearing method 
allowing for imaging of entire adult mouse bodies.

OPTICAL SAMPLE CLEARING METHODS 
FOR LIGHT SHEET FLUORESCENCE 
MICROSCOPY APPLICATIONS

Optical clearing was initially invented by Werner 
Spalteholz in 1914, who adjusted the refractive index 
of the surrounding medium to the proteins of the 
specimen and obtained a transparent sample from 
that which was previously opaque.19 By adjusting 
the refractive index of the sample to the imaging 
solution, scattering of the laser is minimised and 
the light can cross the specimen with very little 
diffraction. During the last decade, several optical 
clearing methods were developed and improved. 
Becker et al.8,20-24 invented a multi-purpose clearing 
protocol for Drosophila, mouse embryos, mouse 
brains, and isolated mouse brain hippocampi.  
Today, various clearing methods with significant 
differences based on the solvents applied are used 
for tissue preparation, amongst others: ScaleA2,25 
3DISCO,26 iDISCO,27 uDISCO,18 ClearT2,28 SeeDB,29 
CLARITY,30,31 CUBIC,32 and FluoClearBABB.33 The 
common denominator of the clearing methods 
mentioned is to preserve endogenous fluorescence 
of proteins such as green or yellow fluorescent 
protein (GFP or YFP), red fluorescent protein from 
Discosoma sp. (DsRed) or mCherry expressed in 
the cells and organs of interest. In general, optical 
clearing of tissue by organic solvents is applied 
to match the refractive index of a tissue sample 
to a surrounding solvent. The first step of clearing  
involves the dehydration of the tissue since 
water has a lower refractive index than cellular 
structures like proteins and lipids.26 Afterwards the  
dehydrated tissue is impregnated with an optical 
clearing agent of the same refractive index.  
The tissue turns transparent and its composition is  
firmer than before.

Imaging of solvent cleared organs in 3D (3DISCO) 
and its successor techniques, whole-mount 
immunostaining and volume imaging (iDISCO) 
and ultimate DISCO (uDISCO), are frequently used 
clearing techniques to image neuronal connections 
in the nervous system.18,26,27 In order to get better 
clearing results of myelinated tissues in the adult 
CNS, 3DISCO was invented. Screening for a new 
chemical lead to the development of a new clearing 
protocol using dibenzyl ether, with the protocol 
for optical clearing of a mouse brain taking only  
4–5 days.26

iDISCO is a simple, rapid, scalable, and inexpensive 
method for volume-imaging of whole-mount 
immunolabelled deep tissue structures. Existing 
whole-mount immunolabelling methods were  
tested and modified to achieve the deepest tissue 
penetration possible. Nearly 30 antibodies were 
shown to work well in immunohistochemistry 
and iDISCO.34 Glycine and heparin treatment 
was identified as a good option to reduce  
immunolabelling background in whole mouse 
embryos, whole adult mouse brains, kidneys, 
and other organs.27 The newly published uDISCO 
protocol is an improvement of 3DISCO to  
circumvent the disadvantage of quenching of 
endogenously expressed fluorescence signals. 
uDISCO uses diphenyl ether, an organic solvent  
with a refractive index of 1.579 in order to clear  
samples. In addition, Vitamin E is used to scavenge 
peroxides and tert-butanol, a dehydrating reagent  
that is more stable than the tetrahydrofuran used  
before in 3DISCO.18 

The DISCO protocols enable high resolution  
imaging of neuronal connections within entire  
organs and even within an entire mouse without 
physical sectioning. The protocols for clearing 
are straightforward and can be performed in a  
relatively short time span of several days,  
depending on the size and tissue composition 
of the specimen. Subsequent imaging of the 
cleared specimen can be executed within several 
minutes to hours, depending on the scan region 
and scan protocol. However, a major drawback 
of the 3DISCO clearing protocol is the rapid loss  
of fluorescence. Hence, cleared samples need 
to be immediately scanned within 24 hours  
post-clearing. Due to the loss of fluorescence of  
3DISCO-cleared samples, multiple scans of a region 
of particular interest can be challenging.26 

The very recently published uDISCO method 
enabled imaging of whole adult rodents by taking 
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advantage of the solvent-dependent shrinkage 
of tissue. The application of organic solvents 
for clearing causes a shrinkage of up to 65% of 
the original volume of the sample, which allows 
for imaging of undissected cleared adult mouse 
bodies. Importantly, the shrinkage does not affect 
microscopic or macroscopic scales.18

Another recently published clearing method, 
especially suited for imaging of whole adult mouse 
brains, is FluoClearBABB. Samples are initially 

dehydrated with an ascending series of butanols 
and the protocol requires 6 days for whole mouse 
brains. Afterwards, this method applies a mixture 
of benzyl alcohol and benzyl benzoate (BABB), 
in combination with an adjusted basic pH, which 
allows for whole brain clearing while reducing the 
optical distortion to a minimum.33 The majority of 
fluorescence is preserved for years with almost no 
photobleaching, enabling multiple repeated scans 
of the cleared specimens. 

Figure 2: The injection of fluorescently-labelled tracers to visualise anatomical and  
subanatomical structures.
A) A maximum intensity projection of the vasculature of a healthy brain after intraveneous injection of 
fluorescently labelled lectin (12 mg/kg body weight) in the tail vein of a mouse; B) a magnification of A;  
C) a maximum intensity projection of the vasculature of a mouse brain with a 3-week-old human U87 
glioblastoma; D) a magnification of the tumour. 
(Bode and Krüwel, unpublished data). 
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The CLARITY protocol, developed by the group 
led by Karl Deisseroth, is very different to the  
previously described clearing protocols.30,31,35,36  
The method is based on an incubation of the 
tissue in a hydrogel matrix combined with an 
electrophoretical removal of lipids, a procedure  
that renders the specimen transparent. The 
CLARITY protocol was already used for the  
clearing of whole rodent brains and spinal cords,37,38 
parts of the human brain,39 several other non-
CNS organs from rodents, and also for clearing of 
embryos.40 This protocol preserves the structure 
of the cells, along with nucleic acids and proteins, 

and enables the localisation of RNA within the 
3D specimen. However, the CLARITY protocol 
is very laborious and requires significantly 
longer time frames of weeks to months for the  
clearing procedure.

Another solution suitable for the clearing of whole 
brains, combined with preserved fluorescence,  
is the clear, unobstructed brain imaging cocktail 
(CUBIC) that achieves transparency of brains by 
the use of aminoalcohols.32 The CUBIC protocol 
is especially useful if the imaging of multiple 
fluorophores is desired.

Figure 3: A preparation of a human cochlea. 
The cochlea was decalcified and cleared using FluoClearBABB. Autofluorescence of the cochlea was then 
imaged using LSFM. 
LSFM: light sheet fluorescence microscopy.
The sample was provided by Prof Dr M. Praetorius and M. Gestewitz, University Heidelberg, Heidelberg, 
Germany; sample preparation and imaging were performed by J. Bode and T. Krüwel.

1,000 µm
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LIGHT SHEET FLUORESCENCE 
MICROSCOPY APPLICATIONS 
IN BIOMEDICAL RESEARCH

Optical clearing can be applied to tissues or organs 
of any species, however, for imaging with LSFM  
the size of the specimen is restricted to several 
centimetres due to the design of the microscope. 
This limits its application mainly to mice and rats, 
if the investigation of whole organs is desired.  
A prerequisite for LSFM is the presence of 
fluorescence, either as protein or fluorophore, 
which labels the cell/region of interest. This can 
be done in various ways by the application of 
transgenic mice or xenografting of modified cells 
that express fluorescent proteins. Furthermore, the 
injection of fluorescently-labelled specific tracers, 
such as antibodies or proteins in general, ligands, 
or nanoparticles, is a frequently used method to 
visualise anatomical and subanatomical structures  
of interest, i.e. by the injection of fluorescently-
labelled lectin that binds to endothelial cells to 
visualise the vasculature (Figure 2; Bode and 
Krüwel, unpublished data). Additional anatomical 
information can also be obtained by tissue-inherent 
autofluorescence. Figure 3 shows the utilisation of  
autofluorescence for LSFM imaging of a human 
cochlea. The sample was decalcified and cleared 
using FluoClearBABB. As already mentioned  
above, it is possible to stain dissected tissue post 
mortem with fluorescently-labelled antibodies to 
validate results. 

LSFM is a versatile technique for medical research. 
In basic research, the high resolution on a single 
cell level, in combination with the fact that the 
imaged specimens are intact and undissected,  
enabled novel insights into neuronal and vascular 
development patterns. Hägerling et al.41 applied  
LSFM on whole-mount immunostained mid- 
gestation mouse embryos to shed light on the 
development of the lymphatic system by precisely 
describing the morphogenetic events during 
the separation of the lymphatic from the venous 
endothelium. Belle et al.42 used LSFM to study axonal 
connectivity in transgenic mouse embryos and 
analysed axon guidance defects in the development 
of the neuronal system. Other studies have 
applied LSFM to investigate axonal regeneration 
and interaction of axons and scar-forming cells,43 
or assessed the regeneration of optic nerves  
after injury, combined with the analysis of axonal 
trajectories.44 A very recent study described a 
workflow for the rapid acquisition of brain activity 

at cellular resolution by profiling immediate early 
gene expression, which highlighted the use of 
LSFM as a powerful platform for developmental 
biology.45 Additionally, LSFM was applied using 
a quantitative hydrogel-based technology to 
correlate activity in cells reporting on behavioural  
experience with measures for brain-wide wiring and 
regarding molecular phenotype.46 Stefaniuk et al.47  
created a novel transgenic rat harbouring  
fluorescent reporter GFP expression under control 
of a neuronal gene promoter. This study is the first 
reference to a cleared rat brain, which exceeds the 
size of a mouse brain by far. The authors stated  
that FluoClearBABB clearing was found superior 
over passive CLARITY and CUBIC methods.

Besides these applications in developmental and 
behavioural biology, LSFM was extensively utilised 
for the investigation of diseases, especially those 
of the CNS, such as Alzheimer’s disease or brain 
tumours.48 In the case of Alzheimer’s disease, 
LSFM was used to assess the formation of amyloid  
plaques in whole mouse brains and in a part of the 
human brain.49 Surprisingly, the authors reported 
a higher complexity of the plaques of the human 
compared to the mouse brain. In translational 
biomedical research, LSFM helped to solve many 
different questions. Our group recently used 
LSFM to investigate the tropism and efficiency of 
adeno-associated viruses as transport vehicles for 
gene therapy of neuronal diseases.48 The use of 
undissected adult mouse brains allowed for a 
rapid 3D analysis of the viral transduction pattern 
of neuronal cells deep inside the brain. The high 
resolution of the microscope enabled the detection 
of single cells expressing the fluorescent proteins  
transduced by the viruses and proved the usability 
of this microscopic setup for higher throughput 
analysis. In glioblastoma, our group has investigated 
the role and modification of the vasculature 
during tumour progression and the effects of  
antiangiogenic treatments.50 Dobosz et al.9 and  
Weber et al.51 assessed the penetration of 
therapeutic antibodies in subcutaneous tumours 
and glioblastoma xenografts by LSFM.

THE EVOLUTION OF LIGHT SHEET 
FLUORESCENCE MICROSCOPY 
TO BECOME A POWERFUL TOOL 
IN BIOMEDICAL RESEARCH 

A limitation of the method is the fact that only 
optically cleared tissue can be used for imaging 
and, thus, in non-transparent model systems, only 
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