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ABSTRACT

The role of different lipid species such as free fatty acids and sphingolipids in non-alcoholic fatty liver disease 
(NAFLD) has been extensively studied during the last decade. In addition, free cholesterol accumulation in 
hepatocytes plays a crucial role in the transition from steatosis to steatohepatitis. However, the contribution 
of these lipids to NAFLD pathology is often evaluated individually. This review attempts to enclose the 
main metabolic and signalling connections between lipotoxic lipid species, and how their homeostasis is 
disrupted in NAFLD.
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INTRODUCTION

In 1953, Hokin and Hokin discovered that some lipid 
species located in the cell membrane were able to 
participate in cell signalling.1 Since then, the role of 
lipids in different pathologies has become an intense 
area of research; despite this, the pathogenesis of 
non-alcoholic fatty liver disease (NAFLD) is still 
poorly understood. The most prevalent hypothesis, 
proposed in 1998,2 postulates the convergence of  
two hits, the first consisting of the accumulation 
of lipid droplets or steatosis, followed by the onset 
of the second hit, which induces inflammation and  
tissue damage, defined as steatohepatitis. This 
hypothesis implies that steatosis is a sensitisation 
factor for the reactions of the second hit. Due to 
this preconception, many in vivo dietary studies 
have been performed with unspecific high fat diets, 
sometimes without a lipid composition disclosure 
and often named as ‘Western diets’.3,4 While this is a 
useful approach to achieving some clinical features 
found in patients, such as steatosis, it hampers 
elucidation of the key detrimental lipid species 
that are participating in stress, inflammation, and 

apoptosis signalling pathways. There is compelling 
evidence that hepatic triglycerides (TG) are not 
the effectors of cellular toxicity in NAFLD, but 
rather a defence mechanism to avoid free fatty 
acid (FFA) accumulation, which can trigger cell 
death pathways.5 Likewise, many reports suggest 
an important lipotoxic role of cholesterol and 
sphingolipid species.6,7 

Fatty liver disease therefore has a complex 
pathology, which comprises many concomitant 
cell alterations.8 In patients, plasma serum and  
liver biopsies show different lipid signatures for  
each stage of the pathology.9-12 This connection 
between lipid composition and disease severity 
underscores how important it is to further 
characterise the contribution of these molecules  
to NAFLD pathology and how they interact with  
each other in order to advance treatment and 
prevention strategies.

The purpose of this review is to describe the lipid 
metabolic changes induced by the main lipotoxic 
lipids in NAFLD.
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FATTY ACIDS 

Fatty acids (FA) are carboxylic acids with a  
non-ramified aliphatic chain of different length.  
In mammals, FA usually contain up to 28 carbons  
in even numbers, but the most abundant length in 
biological tissues ranges from 14–20. In addition, 
the presence of one or more double bonds between 
carbons further increases the diversity of these 
molecules. Saturated FA (SFA), with no double 
bonds, account for 30–40% of the FA present in 
animal tissues, in order of abundance: palmitic acid 
(PA) (15–25%), stearic acid (10–20%), myristic acid 
(MA) (0.5–1%), and lauric acid (<0.5%).13

The role of medium-long-chain FA in NAFLD 
has been more extensively studied than shorter 
chain FA (<16 carbons), probably because of the 
faster catabolism of the latter and therefore lower 
evidence of toxic effects in the cell.14 Nowadays, 
it has been demonstrated that FFA species can 
have opposite roles in NAFLD, particularly when  
it comes to comparing SFA with unsaturated 
ones. Buettner et al.15 observed that high fat 
diets with different fatty acid compositions  
triggered different outcomes: a high intake in  
polyunsaturated FA  reduced expression of  
lipogenic genes regulated by sterol regulatory 
element-binding protein 1 (SREBP-1c) and  
increased peroxisome proliferator activated  
receptor (PPAR)-α-regulated lipolytic genes, 
whereas diets rich in SFA and monounsaturated 
FA induced hepatic steatosis. PA is the source of 
FA and ceramide synthesis in the endoplasmic 
reticulum  (ER) of the cell and is also the most 
abundant FA in Western diets. However, an 
intracellular increase in non-esterified PA can be 
fatal, since this molecule induces mitochondrial 
dysfunction,16 lysosomal permeabilisation,17 ER  
stress, and autophagy alteration.18 Similar lipotoxic  
effects have been observed with other  
SFA such as stearic acid.19,20 On the other hand,  
many in vitro studies report that unsaturated  
fats like oleic acid could protect cells against  
PA lipotoxicity.21-23

The line between ‘good’ and ‘bad’ blurs when 
considering insulin resistance in the literature. 
Buettner et al.15 found that an olive oil enriched  
diet led to insulin resistance in rats. Conversely,  
it has been shown that the polyunsaturated FA  
oleic acid, the main olive oil component, has the  
ability to induce PPAR-α thereby promoting FFA 
oxidation, safe storage into TG, and conferring 
protection against insulin resistance.24 Of note, 

studies that report the participation of unsaturated 
fats in insulin resistance are often performed with 
lipid mixtures,25 making it difficult to exclude a  
possible intervention of other lipid species in the 
pathogenic mechanism.

FATTY ACIDS AND SPHINGOLIPIDS 

PA is the precursor of ceramide, the simplest 
sphingolipid, which belongs to a family of lipids 
present in biological membranes and segregated  
in particular domains, where they participate 
in different signalling events. Sphingolipid 
synthesis occurs in the ER and begins with the 
condensation of the amino acid L-serine with PA 
to form 3-ketosphinganine. This first reaction of 
the pathway is achieved by the enzyme serine 
palmitoyltransferase and is the limiting step. 
Afterwards, 3-ketosphinganine reductase reduces 
3-ketosphinganine to sphinganine followed by  
action of dihydroceramide synthase, which adds a 
fatty acid to sphinganine to form dihydroceramide. 
The six dihydroceramide synthase isoforms  
described so far exhibit specificity towards 
different FA, giving rise to heterogeneous ceramide  
species.26 Finally, dihydroceramide desaturase  
(DES) creates a double trans 4,5 bond thereby 
converting dihydroceramide into ceramide. 
Interestingly, Beauchamp et al.27 found that DES 
can be modified by an irreversible lipidation in 
its N-terminal residue with MA through a process  
called myristoylation, which is carried out by  
the enzyme N-myristoyltransferase. Myristoylation 
increases the activity of DES implying that MA, 
a 14 carbon saturated FA present in mammalian 
milk, can potentiate the synthesis of ceramide. 
Once synthesised, ceramide traffics towards 
the Golgi apparatus, where it is modified to 
generate more complex sphingolipids: ceramide 
trafficking, by the ceramide transfer protein to  
the Golgi, is used for sphingomyelin synthesis  
by the enzyme sphingomyelin synthase through  
the addition of a phosphocholine or 
phosphoethanolamine group in the first carbon 
of ceramide with concomitant generation of 
diacylglycerol.28 Alternatively, ceramide can also 
travel to the Golgi apparatus by vesicular transport 
to be converted into glucosylceramide upon  
the addition of glucose by the enzyme 
glucosylceramide synthase. The addition of sialic 
acids to glucosylceramide generates complex 
sphingolipids and gangliosides. Besides the 
aforementioned de novo synthesis, ceramide can  
also be generated from acid (ASM) or neutral (NSM) 
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sphingomyelinases and from the internalisation  
of membrane sphingolipids through endocytic 
pathways to the lysosomes, where they are 
hydrolysed by sphingomyelinases or glucosidases to 
produce ceramide, a process known as the salvage  
pathway. Many routes therefore converge into the 
generation of ceramide. Importantly, ceramide 
and other sphingolipid species are bioactive lipids 
that contribute to a myriad of cellular processes; 
the alteration of their metabolic homeostasis is a 
potential therapeutic target, based on modulating 
their levels towards a desired functional outcome.29

In a fatty liver scenario, the increase in PA due to 
its higher dietary intake and liver import fuels  
de novo ceramide synthesis. Moreover, PA and 
other SFA can act as toll-like receptor 4 agonists,30  
a signalling pathway shown to induce ceramide 
synthetic enzymes in macrophages,31 but whether 
this occurs in hepatocytes is still under debate.32,33 
PA could also indirectly trigger ceramide synthesis 
through its lipotoxic effects. For example, 
reactive oxygen species or cytokines like tumour 
necrosis factor alpha (TNF-α) lead to a rapid  
accumulation of ceramide through ASM.34  
This event is of particular relevance in lipid rafts,  
membrane microdomains with a high concentration 
of sphingolipids, cholesterol, and signalling  
molecules. The produced ceramide is capable of 
spontaneously self-aggregating and reorganising 
lipid rafts, thereby fusing them and creating large 
signalling platforms. Consequently, ceramide plays 
a crucial role in cellular signalling by clustering 
receptors together.35

Similarly to PA, ceramide accumulation triggers 
lipotoxic pathways like inflammation, ER stress, 
mitochondrial dysfunction and permeabilisation, 
autophagy alteration, and lysosomal cathepsin D 
activation, as reviewed in detail elsewhere.25,36-38  
Some of these pathways can in turn induce  
ceramide and toxic derivatives like gangliosides, 
creating a vicious cycle. On the other hand, 
sphingosine-1-phosphate or ceramide-1-phosphate 
have been reported to be anti-apoptotic and 
mitogenic.29 Recently, an effort has been made to 
decipher the role of different ceramide species 
in cellular signalling. Ceramide C16:0 is toxic 
for macrophages39 but the contrary has been 
observed in human head and neck squamous cell  
carcinomas, where C16:0 was anti-apoptotic and  
C18:0 pro-apoptotic.40 Therefore, the role of  
ceramide species seems to be specific to each cell  
type and further investigation is required to 
characterise their cellular effects.

It is important to note that there is an overlap of 
the targeted organelles and lipotoxic outcomes 
reported with PA and its product ceramide in 
the literature. Since PA can be converted into 
ceramide or trigger ceramide synthesis by other 
means, particular care is suggested before 
attributing lipotoxic roles to PA. In this regard,  
we have recently determined that ER stress is  
aggravated by de novo synthesised ceramide  
after PA treatment in primary hepatocytes.41  
Importantly, we have also validated in vivo the  
potential toxic role of MA when ingested in  
combination with PA through a sustained ceramide 
production, causing serious disruption of lipid  
metabolism homeostasis, ER stress, inflammation,  
and steatohepatitis. 

FATTY ACIDS AND CHOLESTEROL 

Cholesterol is a crucial sterol for animal cell 
membranes. The molecule intercalates between 
phospholipids, positioning the hydroxyl group near 
the polar and the steroid rings in the apolar zones.  
This interaction immobilises and packs the  
membrane, diminishing its fluidity and permeability, 
but at the same time protects the membrane  
against phase transition due to a higher distance 
between aliphatic chains. Besides its structural 
function, cholesterol is highly abundant in lipid  
rafts, where it participates in the formation of  
caveolae, and is the precursor of steroid hormones, 
biliary acids, and vitamin D. 

Synthesis of cholesterol is regulated by its 
availability. The main negative feedback  
mechanism is the inhibition of the sterol 
regulatory element-binding protein 2 (SREBP-2),  
a transcription factor that activates 
cholesterol biosynthetic and uptake enzymes  
like 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-
CoA) reductase and low-density lipoproteins (LDL),  
respectively. Similarly, cholesterol can also directly  
bind to HMG-CoA reductase to induce its  
degradation by the proteasome.42 A high dietary 
intake of cholesterol therefore reduces its  
endogenous synthesis. This regulation might  
be compromised in case of a concomitant increase  
of other lipid types, mainly TG, which provide  
a source of FA. FA β-oxidation would produce  
acetyl-CoA, required for the first step of de novo 
cholesterol synthesis through the mevalonate  
pathway. However, acetyl-CoA availability is  
controlled by the different subcellular localisation  
of these metabolic pathways, meaning that  



 HEPATOLOGY  •  May 2016  	 EMJ  EUROPEAN MEDICAL JOURNAL  HEPATOLOGY  •  May 2016  	 EMJ  EUROPEAN MEDICAL JOURNAL 78 79

previous export from the mitochondria to the 
cytosol, through the citrate transporter, is required.43

Cholesterol homeostasis can also be regulated by 
the nuclear receptors liver X receptor (LXR) and 
farnesoid X receptor (FXR). Oxysterols activate 
LXR, inducing the transcription of genes involved  
in cholesterol transport and clearance, thereby 

making it a potential therapeutic target for 
atherosclerosis.44 On the other hand, LXR  
activation also induces lipogenic transcription 
factors like SREBP-1c, meaning that cholesterol  
could indirectly influence steatosis. In the context  
of fatty liver disease, LXR inhibition instead of 
activation may therefore be more beneficial.45 
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Figure 1:  Crosstalk between lipid species in fatty liver disease. 
Lipotoxic lipid species are highlighted in red, dark arrows represent enzymatic reactions, green and red 
arrows refer to changes through stress or metabolic pathways.
MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; DAG: diacylgylcerol.

Figure 2: Pathways affecting lipid homeostasis in non-alcoholic fatty liver disease. 
1) Ca2+ perturbation, ER membrane alteration; 2) TLR4; 3) Mitochondrial dysfunction. 
Transcription factors are highlighted in green and enzymes in purple. 
TLR4: Toll-like receptor 4; DGAT: Diglyceride acyltransferase; MUFA: monounsaturated fatty acids; PUFA:  
polyunsaturated fatty acids; ER: endoplasmic reticulum; ROS: reactive oxygen species; PPAR-α:  
peroxisome proliferator activated receptor alpha; SPT: serine palmitoyltransferase; SREBP: sterol  
regulatory element-binding protein; SMse: sphingomyelinase.
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Cholesterol catabolism into bile acids begins with  
its conversion to 7-α-hydroxycholesterol by 
cholesterol 7-α-monooxygenase (CYP7A1), the 
rate-limiting step of the pathway.46 Bile acids 
bind FXR, which represses CYP7A1, acting as 
a negative feedback loop. Besides its role in 
maintaining the balance between cholesterol and 
bile acids, FXR also induces lipolysis by activating 
PPAR-α and repressing SREBP-1c.47 Accordingly, 
FXR deficiency in mice results in a hepatic and 
serum increase of cholesterol and TG,48 which  
are NAFLD hallmarks. FXR activation by natural  
and synthetic agonists is thus currently regarded  
as one of the main therapeutic strategies for  
NAFLD.49 However, clinical studies show that  
treatment with FXR agonists has some undesired  
side effects such as pruritus or increased LDL  
cholesterol,50 so further research is required to  
develop FXR modulators with a higher specificity  
for lipolytic activity. 

The increase in lipotoxic FFA, such as PA, in the 
fatty liver promotes ER stress, which has been 
shown to activate SREBP-2.51 In relation to this, 
we have recently observed that mice that are fed 
diets with PA or PA plus MA have ER stress, higher 
HMG-CoA reductase gene expression, and hepatic 
cholesterol.41 Curiously, a high intake in MA, which 
is not regarded as lipotoxic per se, has been found 
to affect serum lipoproteins and hepatic cholesterol 
levels.52 The authors attributed this change to a 
negative correlation of MA with the scavenger 
receptor Class B Type I, a high density lipoprotein 
receptor, and cholesterol catabolic enzymes, 
but they did not analyse ER stress markers.  
Moreover, since the authors used a mixture of  
different fats, the participation of other lipid types  
in this outcome cannot be discarded. 

Conversely, an increase in ER membrane  
cholesterol-loading can perturb the organelle  
calcium stores, thereby triggering ER stress and  
engaging in a vicious cycle.53 The unfolded protein 
response induces lipogenic genes expression, 
enhancing the accumulation of FA, lipotoxicity, 
and synthesis of other lipotoxic lipids like 
ceramides. Our group has also reported that  
free cholesterol accumulation can affect  
other organelles like mitochondria, by depleting 
mitochondrial glutathione and sensitising  
hepatocytes to inflammatory cytokines54 and 
lysosomes, by impairing mitophagy and the 
subsequent removal of damaged mitochondria.55

CHOLESTEROL AND SPHINGOLIPIDS 

The relationship between cholesterol and 
sphingolipids has been less directly addressed, 
but these two lipids seem to be tightly regulated. 
Cholesterol preferentially binds to sphingomyelin 
in lipid membranes and concomitant changes in 
their levels have been reported in several studies, 
as reviewed in detail by Ridgway56 and briefly 
synthesised in the following lines. An obvious 
link between cholesterol and sphingomyelin 
is their presence and crucial role in lipid rafts, 
suggesting that a proper ratio is necessary for 
the functioning of these particular membrane 
regions. In fact, a sphingomyelin decrease in the 
plasma membrane by exogenous sphingomyelinase 
treatment downregulates SREBP-2, and induces 
cholesterol esterification and its retrograde 
transport towards the ER. However, it is unclear if 
the local ceramide formation by this sphingomyelin 
hydrolysis participates in the process. In contrast,  
a decrease in cholesterol may not mean a decrease 
in sphingomyelin. This might be due to the need 
for sphingomyelin to continue other important 
functions for the cell and to maintain the  
membrane structure.

An imbalance of these lipids is seen in a number of 
pathologies. Niemann–Pick diseases are inherited  
lysosomal storage disorders with severe metabolic  
and in some cases neurological consequences.  
Acid sphingomyelinase deficiency and resultant  
sphingomyelin accumulation in lysosomes is the 
cause of Niemann–Pick Type A and B, whereas  
Type C (NPC) is caused by NPC 1 or 2 protein  
deficiency, involved in cholesterol efflux from 
lysosomes. A hallmark of all Niemann–Pick 
variants is fatty liver disease, with accumulation of  
sphingomyelin, cholesterol, and other lipid types 
in lysosomal compartments and other cell  
locations.57,58 Due to the close relationship between  
cholesterol and sphingomyelin and because these  
pathologies share common traits, treatment of  
patients with sphingomyelinases could be an  
effective therapy regardless of their genetic defect.  
In fact, NPC patients also have a low ASM activity  
due to secondary sphingomyelin accumulation, 
and treatment with sphingomyelinases has  
proven effective against cholesterol loading in the  
lysosomes of NPC cells.59

Finally, and similarly to SFA, other sphingolipids 
like ceramide and gangliosides could induce  
ER stress,60 thereby activating SREBP-2 and 
cholesterol synthesis, as we have recently observed  
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in vivo.41 Cholesterol levels can therefore be 
influenced by sphingolipids or vice versa and  
further research will be required to discern their 
respective lipotoxic roles in NAFLD.

LIPID HOMEOSTASIS AND GENETIC 
POLYMORPHISMS

Comparative studies of candidate genes in 
NAFLD patients have found some polymorphisms  
associated with an altered lipid metabolism. For 
example, a single nucleotide polymorphism (SNP) 
in the microsomal triglyceride transfer protein 
(MTTP) was identified in its promoter region.61  
MTTP is involved in very low density lipoprotein 
(VLDL) synthesis and export, but patients with 
the SNP variant are predisposed to liver and  
serum TG accumulation due to reduced MTTP 
protein expression. However, experimental design 
with larger cohorts might be required to confirm 
findings in comparative studies, since other works 
often do not report the same correlations.62

Genome-wide association studies have also 
identified different SNPs associated with NAFLD, 
as reviewed in detail by Anstee and Day.63  
Among them, the SNP rs738409 (Ile148Met) in 
the patatin-like phospholipase domain-containing 
3 (PNPLA3) gene is currently the most strongly 
associated with TG accumulation and NAFLD 
biochemical markers. PNPLA3 is a triacylglycerol 
lipase, but curiously the SNP presence is not  
only related to steatosis but also to steatohepatitis 
and fibrosis.64 Further research is therefore  

needed to fully elucidate the mechanisms  
by which this allelic variant promotes such  
pathogenic outcomes.

CONCLUSION

Lipids play a crucial role in cell signalling  
pathways and metabolism. The study of individual 
lipid species is a powerful tool to look for possible 
therapeutic strategies, but it is also important to 
understand the way these molecules’ metabolic 
and signalling pathways are interconnected.  
Figure 1 summarises how the main lipotoxic  
species can affect each other in the context of 
fatty liver and Figure 2 shows the main pathways 
that disrupt lipid homeostasis. NAFLD research 
has evolved towards a hunt for detrimental lipids. 
Considering the interconnectivity summarised 
in this review, in vitro and in vivo studies should 
systematically perform a detailed quantification 
of lipid species and metabolic gene expression, 
which should be regarded as necessary as  
assessing transaminases in serum. For that  
purpose, lipidomics have become crucial in 
identifying changes in a myriad of these molecules 
with high sensitivity,65 thereby providing the basis  
to look for molecular pathogenic mechanisms.

Further work needs to be done to fully elucidate 
NAFLD complexity,66 but it is clear that its  
inherent lipid accumulation translates into a 
lipid homeostasis dysregulation, with many lipid 
types being affected simultaneously and more  
importantly, many of them having specific  
biological functions.

Acknowledgements

We thank Dr Marc Emmanuel Dumas for his advice. This work was supported by grants SAF-2011-23031, 
SAF-2012-34831, SAF2014-57674-R, and SAF2015-69944-R from Plan Nacional de I+D, Spain, PI11/0325 
(META) grant from the Instituto Salud Carlos III, and by the support of CIBEREHD; the center grant  
P50-AA-11999 Research Center for Liver and 2014SGR785. We also acknowledge support from the  

AGAUR grant 2011BE100599.

REFERENCES
1. Hokin MR, Hokin LE. Enzyme secretion 
and the incorporation of P32 into 
phospholipids of pancreas slices. J Biol 
Chem. 1953;203(2):967-77.

2. Day CP, James OFW. Steatohepatitis: 
A tale of two ‘hits’? Gastroenterology. 
1998;114(4):842-5.

3. Cai D et al. Local and systemic insulin 

resistance resulting from hepatic 
activation of IKK-beta and NF-kappaB. 
Nat Med. 2005;11(2):183-90.

4. Koonen DPY et al. Increased hepatic 
CD36 expression contributes to 
dyslipidemia associated with diet-induced 
obesity. Diabetes. 2007;56(12):2863-71.

5. Yamaguchi K et al. Inhibiting 

triglyceride synthesis improves 
hepatic steatosis but exacerbates liver 
damage and fibrosis in obese mice with 
nonalcoholic steatohepatitis. Hepatology. 
2007;45(6):1366-74.
6. Ginsberg HN. Is the slippery slope from 
steatosis to steatohepatitis paved with 
triglyceride or cholesterol? Cell Metab. 
2006;4(3):179-81.



 HEPATOLOGY  •  May 2016  	 EMJ  EUROPEAN MEDICAL JOURNAL  HEPATOLOGY  •  May 2016  	 EMJ  EUROPEAN MEDICAL JOURNAL 82 83

7. Alkhouri N et al. Lipotoxicity in 
nonalcoholic fatty liver disease: not all 
lipids are created equal. Expert Rev 
Gastroenterol Hepatol. 2009;3(4):445-51.
8. Tilg H, Moschen AR. Evolution of 
inflammation in nonalcoholic fatty 
liver disease: The multiple parallel hits 
hypothesis. Hepatology. 2010;52(5): 
1836-46.
9. Puri P et al. A lipidomic analysis 
of nonalcoholic fatty liver disease. 
Hepatology. 2007;46(4):1081-90.
10. Puri P et al. The plasma lipidomic 
signature of nonalcoholic steatohepatitis. 
Hepatology. 2009;50(6):1827-38.
11. Allard JP et al. Nutritional assessment 
and hepatic fatty acid composition in 
non-alcoholic fatty liver disease (NAFLD): 
a cross-sectional study. J Hepatol. 
2008;48(2):300-7.
12. Araya J et al. Increase in long-chain 
polyunsaturated fatty acid n - 6/n - 3 ratio 
in relation to hepatic steatosis in patients 
with non-alcoholic fatty liver disease. Clin 
Sci (Lond). 2004;106(6):635-43.
13. Legrand P, Rioux V. The complex 
and important cellular and metabolic 
functions of saturated fatty acids. Lipids. 
2010;45(10):941-6.
14. Rioux V et al. Myristic acid, unlike 
palmitic acid, is rapidly metabolized in 
cultured rat hepatocytes. J Nutr Biochem. 
2000;11(4):198-207.
15. Buettner R et al. Defining high-fat-
diet rat models: metabolic and molecular 
effects of different fat types. J Mol 
Endocrinol. 2006;36(3):485-501.
16. Luo Y et al. Cyclosporine A and 
palmitic acid treatment synergistically 
induce cytotoxicity in HepG2 cells. Toxicol 
Appl Pharmacol. 2012;261(2):172-80.
17. Klionsky DJ et al. Does bafilomycin 
A1 block the fusion of autophagosomes 
with lysosomes? Autophagy. 2008;4(7): 
849-950.
18. González-Rodríguez A et al. Impaired 
autophagic flux is associated with 
increased endoplasmic reticulum stress 
during the development of NAFLD. Cell 
Death Dis. 2014;5:e1179.
19. Malhi H et al. Free fatty acids induce JNK-
dependent hepatocyte lipoapoptosis. J 
Biol Chem. 2006;281(17):12093-101.

20. Zhang Y et al. α-Linolenic acid 
prevents endoplasmic reticulum stress-
mediated apoptosis of stearic acid 
lipotoxicity on primary rat hepatocytes. 
Lipids Health Dis. 2011;10:81.
21. Ricchi M et al. Differential effect of oleic 
and palmitic acid on lipid accumulation 
and apoptosis in cultured hepatocytes. 
J Gastroenterol Hepatol. 2009;24(5): 
830-40.
22. Mei S et al. Differential roles of 
unsaturated and saturated fatty acids on 
autophagy and apoptosis in hepatocytes. 

J Pharmacol Exp Ther. 2011;339(2): 
487-98.
23. Gao D et al. Oleate protects against 
palmitate-induced insulin resistance in 
L6 myotubes. Br J Nutr. 2009;102(11): 
1557-63.
24. Coll T et al. Oleate reverses 
palmitate-induced insulin resistance and 
inflammation in skeletal muscle cells. J 
Biol Chem. 2008;283(17):11107-16.
25. Summers SA. Ceramides in insulin 
resistance and lipotoxicity. Prog Lipid 
Res. 2006;45(1):42-72.
26. Mullen TD et al. Ceramide synthases 
at the centre of sphingolipid metabolism 
and biology. Biochem J 2012;441(3): 
789-802.
27. Beauchamp E et al. Myristic acid 
increases the activity of dihydroceramide 
Delta4-desaturase 1 through its 
N-terminal myristoylation. Biochimie. 
2007;89(12):1553-61.
28. Hanada K. Intracellular trafficking of 
ceramide by ceramide transfer protein. 
Proc Japan Acad Ser B Phys Biol Sci. 
2010;86(4):426-37.
29. Hannun YA, Obeid LM. Principles of 
bioactive lipid signalling: lessons from 
sphingolipids. Nat Rev Mol Cell Biol. 
2008;9(2):139-50.
30. Lee JY et al. Saturated fatty acids, but 
not unsaturated fatty acids, induce the 
expression of cyclooxygenase-2 mediated 
through Toll-like receptor 4. J Biol Chem. 
2001;276:16683-9.
31. Dennis EA et al. A Mouse 
Macrophage Lipidome. J Biol Chem 
2010;285(51):39976-85.
32. Holland W et al. Lipid-induced 
insulin resistance mediated by the 
proinflammatory receptor TLR4 requires 
saturated fatty acid–induced ceramide 
biosynthesis in mice. J Clin Invest. 
2011;121(5):1858-70.
33. Galbo T et al. Saturated and unsaturated 
fat induce hepatic insulin resistance 
independently of TLR-4 signaling and 
ceramide synthesis in vivo. Proc Natl 
Acad Sci U S A. 2013;110(31):12780-5.

34. García-Ruiz C et al. Defective TNF-α-
mediated hepatocellular apoptosis and 
liver damage in acidic sphingomyelinase 
knockout mice. J Clin Invest. 2003;111(2): 
197-208.
35. Zhang Y et al. Ceramide-enriched 
membrane domains—Structure and 
function. Biochim Biophys Acta. 2009; 
1788(1):178-83.
36. Morales A, Fernandez-Checa 
JC. Pharmacological modulation of 
sphingolipids and role in disease and 
cancer cell biology. Mini Rev Med Chem. 
2007;7(4):371-82.
37. Nikolova-Karakashian MN, Rozenova 
KA. [Ceramide in stress response]. 
Zhonghua Lao Dong Wei Sheng Zhi Ye 

Bing Za Zhi. 2010;28(6):460-3.
38. Pagadala M et al. Role of ceramides 
in nonalcoholic fatty liver disease. Trends 
Endocrinol Metab. 2012;23(8):365-71.
39. Aflaki E et al. C16 ceramide is crucial 
for triacylglycerol-induced apoptosis in 
macrophages. Cell Death Dis 2012;3:e280.
40. Senkal CE et al. Antiapoptotic roles 
of ceramide-synthase-6-generated C16-
ceramide via selective regulation of the 
ATF6/CHOP arm of ER-stress-response 
pathways. FASEB J. 2010;24(1):296-308.
41. Martínez L et al. Myristic acid 
potentiates palmitic acid-induced 
lipotoxicity and steatohepatitis associated 
with lipodystrophy by sustaning de 
novo ceramide synthesis. Oncotarget. 
2015;6(39):41479-96.
42. Espenshade PJ, Hughes AL. Regulation 
of sterol synthesis in eukaryotes. Annu 
Rev Genet. 2007;41:401-27.
43. Gnoni GV et al. The mitochondrial 
citrate carrier: Metabolic role and 
regulation of its activity and expression. 
IUBMB Life. 2009;61(10):987-94.
44. Kalaany NY, Mangelsdorf DJ. LXRs 
and FXR: the yin and yang of cholesterol 
and fat metabolism. Annu Rev Physiol. 
2006;68:159-91.
45. Rudraiah S et al. Nuclear Receptors 
as Therapeutic Targets in Liver Disease: 
Are We There Yet? Annu Rev Pharmacol 
Toxicol. 2016;56:605-26.
46. Khalid Q et al. Non-alcoholic fatty 
liver disease: The effect of bile acids 
and farnesoid X receptor agonists on 
pathophysiology and treatment. Liver Res 
Open J. 2015;1(2):32-40.
47. Modica S et al. Deciphering the nuclear 
bile acid receptor FXR paradigm. Nucl 
Recept Signal. 2010;8:e005.
48. Sinal CJ et al. Targeted disruption of 
the nuclear receptor FXR/BAR impairs 
bile acid and lipid homeostasis. Cell. 
2000;102(6):731-44.
49. Cariou B, Staels B. FXR: a promising 
target for the metabolic syndrome? 
Trends Pharmacol Sci. 2007;28(5): 
236-43.
50. Neuschwander-Tetri BA et al. Farnesoid 
X nuclear receptor ligand obeticholic 
acid for non-cirrhotic, non-alcoholic 
steatohepatitis (FLINT): A multicentre, 
randomised, placebo-controlled trial. 
Lancet. 2015;385(9972):956-65.
51. Colgan SM et al. Endoplasmic reticulum 
stress causes the activation of sterol 
regulatory element binding protein-2. Int 
J Biochem Cell Biol. 2007;39(10):1843-51.
52. Loison C et al. Dietary myristic 
acid modifies the HDL-cholesterol 
concentration and liver scavenger 
receptor BI expression in the hamster. Br 
J Nutr. 2002;87(3):199-210.
53. Feng B et al. The endoplasmic 
reticulum is the site of cholesterol-



 HEPATOLOGY  •  May 2016  	 EMJ  EUROPEAN MEDICAL JOURNAL  HEPATOLOGY  •  May 2016  	 EMJ  EUROPEAN MEDICAL JOURNAL 82 83

induced cytotoxicity in macrophages. Nat 
Cell Biol. 2003;5(9):781-92.

54. Marí M et al. Mitochondrial free 
cholesterol loading sensitizes to TNF- and 
Fas-mediated steatohepatitis. Cell Metab. 
2006;4(3):185-98.

55. Baulies A et al. Lysosomal cholesterol 
accumulation sensitizes to acetaminophen 
hepatotoxicity by impairing mitophagy. 
Sci Rep. 2015;5:18017.

56. Ridgway ND. Interactions between 
metabolism and intracellular distribution 
of cholesterol and sphingomyelin. Biochim 
Biophys Acta. 2000;1484(2-3):129-41.

57. Fernandez A et al. ASMase is 
required for chronic alcohol induced 
hepatic endoplasmic reticulum stress 
and mitochondrial cholesterol loading. J 
Hepatol. 2013;59(4):805-13.

58. Fucho R et al. Asmase regulates 
autophagy and lysosomal membrane 
permeabilization and its inhibition 
prevents early stage nonalcoholic 
steatohepatitis. J Hepatol. 2014;61(5): 
1126-34.
59. Schuchman EH, Wasserstein MP. 
Types A and B Niemann-Pick disease. 
Best Pract Res Clin Endocrinol Metab. 
2015;29(2):237-47.
60. Morales A et al. Sphingolipids and cell 
death. Apoptosis. 2007;12(5):923-39.
61. Bernard S et al. Association between 
microsomal triglyceride transfer protein 
gene polymorphism and the biological 
features of liver steatosis in patients with 
Type II diabetes. Diabetologia. 2000; 
43(8):995-9.
62. Oliveira CPMS et al. Association of 
polymorphisms of glutamate-cystein 

ligase and microsomal triglyceride 
transfer protein genes in non-alcoholic 
fatty liver disease. J Gastroenterol 
Hepatol. 2010;25(2):357-61.
63. Anstee QM, Day CP. The genetics of 
NAFLD. Nat Rev Gastroenterol Hepatol. 
2013;10(11):645-55.
64. Burza MA et al. PNPLA3 I148M 
(rs738409) genetic variant is associated 
with hepatocellular carcinoma in obese  
individuals. Dig Liver Dis. 2012;44(12): 
1037-41.
65. Dumas ME et al. Metabolic phenotyping 
and systems biology approaches to 
understanding metabolic syndrome and 
fatty liver disease. Gastroenterology. 2014; 
146(1):46-62
66. Tiniakos DG et al. Nonalcoholic fatty 
liver disease: pathology and pathogenesis. 
Annu Rev Pathol Mech Dis. 2010;5:145-71.


