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ABSTRACT

Cardiac diseases have complex molecular origins. However, current clinical diagnostic tools are often 
inadequate to uncover specific molecular components of cardiac pathologies. Thus, we are still lacking 
a detailed understanding of disease progression, and both patient diagnosis and treatment are often 
inaccurate. Molecular imaging could play a leading role in translating basic research to both preclinical 
and clinical cardiac research, ultimately improving our understanding and management of human disease. 
In this review, we highlight the diversity of current molecular imaging tools that have been used in 
clinical research or have reached the stage of clinical translation. Facilitated by the steadily increasing  
infrastructure of clinical positron emission tomography and positron emission tomography-magnetic 
resonance imaging cameras and advancing gating analysis, these tools allow the implementation of clinical 
cardiac molecular imaging trials to deepen our knowledge of human disease and improve patient care.

Keywords: Positron emission tomography (PET), cardiac imaging, single photon emission computed 
tomography (SPECT), heart disease. 

INTRODUCTION

Cardiovascular disease remains the leading cause 
of death in Europe and worldwide.1 Almost all major 
pharmaceutical companies run large programmes 
on cardiovascular and cardiac drug development. 
Molecular imaging may play an important role in 
improving not only diagnosis but also treatment 
of cardiac diseases. The current understanding 
of molecular heart function is sufficient to 
implement more molecular imaging tools in the 
clinics for interrogating major aspects of cardiac 
function, including metabolism, innervation, and 
conduction. The infrastructure for clinical positron 
emission tomography (PET) and PET-magnetic 
resonance imaging is steadily growing, allowing for  
routine application of cardiac scans, including  
motion correction for heartbeat and breathing.  
The purpose of this review is to provide an overview 
of established and upcoming molecular imaging 
probes for cardiac function, which could aid 
our understanding of the human heart in health,  
disease, and as a function of treatment. 

METABOLISM

In contrast to skeletal muscle, cardiomyocytes 
sustain an everlasting cycle of contraction and 
relaxation in order to feed our body with blood 
and maintain the homeostasis of nutrients and 
metabolic gases.2 This highly specialised task is 
facilitated by a specific molecular architecture. 
With their steady and sustained workload,  
cardiomyocytes are specialised for aerobic 
metabolism of fatty acids (FA) and are packed with 
mitochondria performing oxidative phosphorylation 
and β-oxidation. This unique molecular architecture 
offers numerous opportunities to use cardiac FA 
metabolism as a platform for molecular imaging 
(Figure 1). Although cardiac metabolism has a 
wide adaptive capacity and plasticity when facing 
challenging heart energy production conditions, 
most forms of cardiac diseases are associated with 
acute or chronic changes in energy metabolism.

The heart rapidly extracts FA via either passive 
diffusion or a protein carrier-mediated pathway.2,3 
Oleate and palmitate are the most abundant  
FA in the blood pool. Once inside the cytosolic 
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compartment of the cardiomyocyte, FA are 
esterified to long-chain acyl-coenzyme A (CoA) 
esters by FA-CoA synthase. The activated FA can 
then be esterified to triacylglycerols, or transferred 
to carnitine via carnitine palmitoyltransferase 1 
(CPT1). The acylcarnitine is then shuttled into the 
mitochondria by carnitine-acylcarnitine translocase, 
where the majority is converted back to FA-CoA 
by carnitine palmitoyltransferase 2 and enters 
mitochondrial FA β-oxidation. 

Ventricular hypertrophy and dilated cardiomyopathy 
(DCM) are characterised by decreased 
myocardial capacity of FA oxidation and a shift 
to glucose metabolism, as a result of a decreased 
expression and activity of proteins involved in FA  
metabolism.4,5 By contrast, diabetic cardiomyopathy 
results in an increase of FA oxidation due to  
increased circulation levels and consequential 
accumulation of intramyocardial lipid metabolites.2 
Ischaemic heart disease involves reduced oxidative 
metabolism due to reduced oxygen supply and 
increased anaerobic glycolysis, even though FA 

oxidation recovers quickly during reperfusion 
following ischaemia.2 Given this molecular  
pathology, current PET imaging of myocardial 
metabolism utilises 11C-labelled natural FA and 
18F-labelled FA analogues, as well as the canonical 
[18F]fludeoxyglucose.6 For the purpose of this 
review, we will focus on FA metabolism, which is 
an independent predictor of left ventricular mass  
in hypertension and left ventricular dysfunction.7

[11C]palmitate has been used to assess various 
steps of myocardial FA metabolism in the human 
heart, including storage as a triglyceride and 
β-oxidation (Figure 1B). Given the small storage 
capacities of cardiomyocytes for triglycerides 
and the vast number of mitochondria, the signal 
is dominated by the oxidation pathway and 
can thus be used for evaluating the enzymatic  
activity of CPT1, the enzyme that catalyses 
the acyl transfer from FA-CoA to carnitine.8  
Using this imaging probe, it has been demonstrated  
that obesity and diabetes mellitus (DM) are  
associated with an increase in myocardial FA  
metabolism and reduced glucose utilisation.9,10  
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Figure 1: Cardiac fatty acid metabolism.
A) Chemical structures of native unsaturated and saturated FA, oleic acid, and palmitic acid. B) PET and 
SPECT radiotracers that are isotopes of native FA ([11C]palmitic acid and [11C]acetic acid), or mimic their 
metabolism ([123I]IPPA and [18F]F7). C) FA analogues as SPECT ([123I]BMIPP) and PET ligands ([18F]FTHA, 
[18F]FTP, and [18F]FCPHA) that facilitate mitochondrial trapping. 
BMIPP: β-methyl-para-[123I]-iodophenyl-pentadecanoic acid; F7: fluoroethoxy phenyl pentadecanoic acid; 
FA: fatty acid; FCPHA: fluoro-3,4-methyleneheptadecanoic acid; FTHA: fluoro-6-thia-heptadecanoic acid;  
FTP: fluoro-4-thia-palmitate; IPPA: pentadecanoic acid; PET: positron emission tomography; SPECT:  
single photon emission computed tomography. 
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By contrast, patients with idiopathic DCM 
exhibited alterations in myocardial metabolism 
characterised by decreased FA oxidation and 
increased glucose metabolism.11 Thus far, the 
routine clinical use of [11C]palmitate has been  
limited by its relatively complicated synthesis and 
a need for an on-site cyclotron. Recent efforts to 
improve synthesis and a growing infrastructure of 
hospital cyclotrons may facilitate future clinical use 
of this radiotracer.12

Analogously to FA, acetate is rapidly extracted by 
cardiomyocytes and oxidised in mitochondria via  
the tricarboxylic acid (TCA) cycle to CO2 and 
H2O.13 [11C]acetate has been used to measure 
myocardial blood flow in patients with hypertrophic 
cardiomyopathy14 and enabled simultaneous 
quantification of myocardial perfusion, oxidative 
metabolism, cardiac efficiency, and pump function 
at rest as well as during exercise in athletes.15

15-(p-[123I]iodophenyl)-pentadecanoic acid 
([123I]IPPA) was the first single photon emission  
computed tomography (SPECT) ligand to image 
myocardial FA metabolism in vivo, showing rapid 
accumulation in the heart and similar clearance 
kinetics as palmitate, which are directly correlated 
with β-oxidation in animal disease models and in 
humans.16,17 Currently, [123I]IPPA is commercially 
available in Europe and Canada, and its usefulness  
as a cardiac imaging agent has been explored in 
clinical trials.

Tu et al.18 designed an 18F-labelled radiotracer, 
15-(4-(2-[18F]fluoroethoxy)phenyl)pentadecanoic 
acid ([18F]F7), based on [123I]IPPA. [18F]F7 is capable 
of mimicking [11C]palmitate with regard to its 
ability to capture all key aspects of FA metabolism,  
including uptake, β-oxidation, and storage as a 
triglyceride. In addition, it is more feasible for  
clinical use due to the longer half-life of 18F, 
and it allows quantitative PET imaging with  
improved temporal resolution compared to SPECT.  
Small animal PET studies in Sprague-Dawley rats 
displayed high uptake in the heart, good imaging 
contrast over blood and other tissues, and similar 
biphasic washout kinetics as [11C]palmitate.

In addition to isotopes of native FA, FA analogues 
acting as false substrates or inhibitors of FA 
metabolism have been explored as PET and SPECT 
ligands, whose signal emphasises myocardial  
β-oxidation (Figure 1C). These analogues are 
recognised by the cytoplasmic acyl-CoA synthase 
and CPT1 in the mitochondrial membrane  

but are trapped inside the mitochondria due to  
incomplete  β-oxidation. 

For example, β-methyl-p-[123I]-iodophenyl-
pentadecanoic acid ([123I]BMIPP) has been  
developed as a derivative of the aforementioned 
[123I]IPPA with the intention of preventing  
β-oxidation by blocking the β-position with a methyl 
functional group, thus enforcing accumulation 
in mitochondria. [123I]BMIPP imaging has been 
used for identifying patients with recent exercise-
induced myocardial ischaemia19 and non-invasive 
diagnosis of coronary artery disease in patients  
with heart failure.20

Pandey et al.21 investigated long-chain [18F]
fluorothia FA for their use as myocardial  
β-oxidation probes. CoA thioesters of 4-thia FA 
analogues are potent inhibitors of β-oxidation 
through inhibition of acyl-CoA dehydrogenase,  
thus leading to an accumulation of radiotracers in 
the mitochondria after incomplete β-oxidation.22-24 

14(R,S)-[18F]Fluoro-6-thia-heptadecanoic acid  
([18F]FTHA) uptake was reduced by 81% 
in mice after pharmacological inhibition of 
CPT1 using 2-[5-(4-chlorophenyl)pentyl]-2-
oxiranecarboxylate.25 Likewise, β-oxidation  
inhibition by lactate infusion in pigs reduced the 
myocardial [18F]FTHA signal by 89%, demonstrating 
that nearly all of the PET ligand taken up by the  
heart enters the mitochondria.26,27 Both studies 
confirmed that the unidirectional uptake rate  
of [18F]FTHA reflects β-oxidation and allows the 
measurement of cardiac FA-metabolism in vivo, 
which has been exploited in numerous clinical 
studies. For example, accumulation of [18F]FTHA in 
the myocardium was increased by aerobic exercise 
in human volunteers due to increased energy  
demand.28 In patients with coronary artery disease, 
[18F]FTHA imaging displayed a reduced signal in 
accordance with reduced oxidative metabolism.29 
In addition, the [18F]FTHA signal was reduced in 
healthy volunteers with glucose/insulin clamp, 
demonstrating the ability to detect a change in 
energy substrate preference from FA to glucose.30 
Furthermore, [18F]FTHA has recently been used to 
investigate the role of metabolic alterations in the 
development of a maladaptive right ventricular 
response in pulmonary arterial hypertension.31 

Following the same chemical strategy of inhibiting 
β-oxidation, 16-[18F]fluoro-4-thia-palmitate ([18F]
FTP) was developed to improve sensitivity to 
changes in FA oxidation caused by hypoxia, 
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and was found to have prolonged myocardial  
retention.32 [18F]FTP showed reduced FA 
oxidation in hypoxic rat hearts, showing 
comparable imaging qualities as [18F]FTHA in  
swine, but was not influenced by altered plasma  
substrate levels.33 Elevated uptake of [18F]FTP  
was found in patients with Type 2 DM.34  
This is in line with the aforementioned increase  
in myocardial FA oxidation found in this patient  
group using [11C]palmitate.

Shoup et al.35 introduced trans-9-[18F]fluoro-3,4-
methyleneheptadecanoic acid ([18F]FCPHA), which 
features a cyclopropyl group to block β-oxidation, 
as a new radiolabelled FA analogue. [18F]FCPHA  
revealed fast blood clearance, high myocardial  
uptake, and good retention in rats and rhesus 
monkeys. [18F]FCPHA is currently undergoing  
a Phase II clinical trial to assess myocardial 
FA perfusion and uptake in coronary artery  
disease patients.36 

INNERVATION

Heart function is controlled by the autonomous 
nervous system (Figure 2). While cholinergic  
neurons dominate innervation to the sinoatrial 
node, setting a constant rhythm of contractions,37 
adrenergic fibres predominantly innervate the 
ventricles.38 Adrenergic activity induces several 
cardiovascular effects, including an increase  
in cardiac contractility (inotropy), frequency 
(chronotropy), rate of relaxation (lusitropy), 
and acceleration of impulse conduction through 
the atrioventricular node (dromotropy).39  
These effects are triggered by the catecholamine  
neurotransmitters noradrenaline and adrenaline 
acting on β1-adrenergic receptors.38

The importance of the sympathetic nervous system 
in cardiac disorders, including ischaemic heart 
disease and heart failure, is well established.40 
Aberrant adrenergic function, including increased 
neurotransmitter release and reduced reuptake, 
occurs early in the development of heart failure 
as a compensatory mechanism for sustaining the  
cardiac output despite, for instance, a physical 
insult to the myocardium or increased peripheral 
resistance. However, if increased activity persists 
over time, the heart will progress into a state of 
chronic decompensated heart failure, and the 
hyperactive adrenergic activity will continue to 
stimulate the heart to work at a level much higher 
than the cardiac muscle can handle.38
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Figure 2: Cardiac innervation. 
A) The heart is innervated by sympathetic and 
parasympathetic neurons, which signal through the 
neurotransmitters noradrenaline and acetylcholine, 
respectively. B) SPECT and PET radiotracers for 
assessing adrenergic innervation by measuring the 
presynaptic NAT ([123I]mIBG, [11C]HED, and [18F]
LMI1195) and β1-receptors ([11C]CGP12388). C) PET 
radiotracers for assessing parasympathetic 
innervation of the heart by measuring muscarinic 
receptors ([11C]MQNB), nicotinic α4β2 receptors 
([18F]-2-fluoro-A85380), and AChE ([11C]donepezil). 
AChE: acetylcholinesterase; mIBG: 
meta-[123I]iodobenzylguanidine; MQNB:  
N-[11C]methyl-quinuclidin-3-yl benzilate; NAT:  
noradrenaline transporter; PET: positron emission  
tomography; SPECT: single photon emission 
computed tomography.
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This pathological adrenergic innervation can be 
measured using molecular imaging, for example 
SPECT and PET. Even though the cardiac specific 
isoforms of proteins involved in adrenergic  
signalling would allow, in theory, the development 
of dedicated and cardiac-specific imaging tools, 
the current toolbox is centred on general mimetics 
of the native neurotransmitters (Figure 2B). 

Meta-[123I]iodobenzylguanidine ([123I]mIBG), an 
iodinated adrenergic neurotransmitter analogue, 
is commonly used for SPECT imaging of the 
presynaptic noradrenaline transporter (NAT).41 

NAT is a transmembrane protein that functions as 
a rapid noradrenaline reuptake system located 
at or near presynaptic terminals, and terminates 
noradrenergic signaling.42 The cardiac signal of 
[123I]mIBG is lower in individuals with heart failure 
due to a higher NAT occupancy, allowing the use 
of [123I]mIBG as an independent predictor of heart 
failure progression and cardiac mortality. [123I]mIBG 
has been used clinically in different continents for  
almost three decades.43-45 

In order to make adrenergic innervation imaging 
available for quantitative and non-invasive PET 
imaging, 11C and 18F-labelled ligands have been 
developed (Figure 2B). For example, [11C]meta-
hydroxyephedrine ([11C]HED) was developed based 
on metaraminol,46 a synthetic false transmitter 
analogue of noradrenaline, which is transported by 
NAT. It is, however, resistant to catechol-O-methyl 
transferase and monoamine oxidase metabolism 
and is thus retained in nerve terminals due to 
continuous cyclical release and reuptake.47 [11C]HED 
displayed a lower myocardial signal in patients 
with congestive heart failure,48 which correlated to  
patient prognosis.49 The 18F-labelled N-[3-bromo-4- 
(3-[18F]-fluoro-propoxy)-benzyl-guanidine ([18F]
LMI1195) is structurally related to [123I]mIBG and 
showed a reduced signal in rodent models of heart 
failure.50 Additionally, first-in-human clinical trials 
showed its potential for assessing myocardial 
sympathetic activity in vivo.51 The sensitive and 
quantitative PET imaging using [11C]HED and  
[18F]LMI1195 allowed evaluation of regional 
denervation and heterogeneity of innervation in 
the heart, and could be used for predicting sudden 
cardiac death.48,51 

Following the chemical design of [123I]mIBG, 
18F-labelled benzylguanidines (meta-[18F]
fluorobenzylguanidine ([18F]mFBG)52 and  
para-[18F]fluorobenzylguanidine ([18F]pFBG)) have 
been developed as alternative probes for imaging 

NAT using PET.53,54 Both candidates have been 
successfully tested in neuroendocrine tumour  
mouse models but not yet for sympathetic nervous 
system dysfunction in cardiovascular diseases. 

As a consequence of sustained  
enhanced sympathetic stimulation, postsynaptic 
β-adrenoceptors are downregulated in heart 
failure.55,56 The recently disclosed 11C-labelled 
beta-blocker S-4-(3-([11C]-isopropylamino)-2-
hydroxypropoxy)-2H-benzimidazol-2-one ([11C]
CGP12388) (Figure 2B) allowed measurements of 
postsynaptic β1-receptor density and occupancy in 
patients with idiopathic DCM.57 Thus, the current 
molecular imaging toolbox for sympathetic 
innervation enables measurements of all major pre 
and postsynaptic components of cardiac adrenergic 
signalling in humans. Given the widespread 
use of beta-blockers, it will be interesting to 
interrogate receptor dynamics as a function of  
(long-term) treatment.

Abnormal function of the parasympathetic system, 
in particular parasympathetic withdrawal, has been 
recognised as a key component of the molecular 
pathology underlying heart disease.58,59 The highly 
specific muscarinic acetylcholinergic antagonist 
N-[11C]methyl-quinuclidin-3-yl benzilate ([11C]
MQNB) has been used to measure myocardial 
muscarinic acetylcholine receptor (mAChR) density 
in vivo (Figure 2C).60 [11C]MQNB measurements in 
idiopathic DCM patients revealed an upregulation 
of myocardial mAChR, presumably as an adaptive 
mechanism to β-adrenergic stimulation.61 Likewise, 
patients with myocardial infarction showed 
increased [11C]MQNB signal in non-damaged left 
ventricular regions.62 Since there is a decreased  
vagal tone in these pathologies, the role of 
upregulated expression of mAChR has still to be 
elucidated, and molecular imaging could play 
an integral role in understanding the dynamics  
between sympathetic and parasympathetic 
signalling in humans.

Acetylcholinesterase (AChE) inhibitors, such  
as pyridostigmine, have been used as 
parasympathomimetica, for instance in chronic  
heart failure patients.63 Gjerløff et al.64 tested  
[11C]donepezil for measurements of AChE 
density in human peripheral organs and found a  
homogenous and displaceable signal of the tracer 
in the left ventricle of the heart, which might help 
in understanding the role of neurotransmitter 
metabolism in human disease (Figure 2C).
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Imaging of nicotinic AChR could help in  
better understanding their pathophysiological 
role in atherosclerotic disease progression 
and could thus be used as a diagnostic tool to  
risk-stratify patients for myocardial infarction and 
stroke.65,66 [18F]-2-fluoro-A85380 was the first PET 
radiotracer developed for imaging of the cardiac  
α4β2-nicotinic AChR in healthy subjects and has 
already been tested in patients with Parkinson’s 
disease and patients with multiple system  
atrophy (Figure 2C).67

Given the currently available imaging technology 
for muscarinic and nicotinic receptors, as well as 
AChE, understanding the dynamics of different 
components of the cholinergic innervation system 
in humans is within reach and would provide  
major scientific and clinical impact at relatively low  
risk of failure. 

MYOCARDIAL CONDUCTION

The neuronal input from sympathetic and 
parasympathetic transmission is translated into 
cardiac action through a series of ion channels 
that respond to changes in membrane potential 
and ultimately couple excitation to contraction  
(EC-coupling).68

Fast activating voltage-gated sodium channels 
(NaVs), mainly NaV1.5 (SCN5A), initiate action 

potentials and strongly depolarise cardiomyocytes 
(Figure 3).69 Subsequent activation of high-voltage 
activated Ca2+ channels (L-type, mainly CaV1.2) 
leads to Ca2+ influx and further Ca2+ release from 
the sarcoplasmic reticulum, which increases the 
cytosolic Ca2+ concentration from nanomolar to 
micromolar concentrations.70 This increase elicits 
conformational changes of the filament complex to 
facilitate the actin-myosin interaction and attains 
myocardial contraction.68

Numerous cardiac diseases are rooted in abnormal 
electrical signalling of the myocardium due to 
mutated ion channels or pathological expression 
levels.71 Heterozygous mutations in SCN5A have 
been implicated in rare genetic arrhythmia, such 
as Brugada syndrome, long-QT syndrome, and 
progressive cardiac conduction defect. Abnormal 
expression levels of SCN5A have also been found 
in structural heart disease, including heart failure 
and ischaemic cardiomyopathy.72 Furthermore, 
an increase in dihydropyridine (DHP) receptor 
expression, an L-type calcium channel, has been 
found in hypertrophied hearts.73

Recently, the first PET radiotracer for in vivo 
molecular imaging of cardiac SCN5A has been 
developed (Figure 3).74 Radiocaine, an analogue 
of the classical Class-1b antiarrhythmic lidocaine, 
allows in vivo measurements of density and 
drug occupancy of cardiac SCN5A, which,  
to date, could only be determined invasively or 
through in vitro methods. Specific binding to 
SCN5A has been demonstrated in living rats and  
baboons; furthermore, autoradiography studies 
using myocardial tissue from human failing heart  
explants revealed reduced target density. 

In order to assess changes in L-type calcium  
channel density in vivo, several DHP-based drugs 
have been radiolabelled with 11C for PET imaging 
(Figure 3).75 The amlodipine analogue [11C]S12968 
showed ≤80% specific binding in the myocardium 
and was used for in vivo measurement of  
myocardial DHP binding site density in beagles,  
with low doses of Ca2+ channel antagonists.

The ability to measure both NaVs and CaVs  
as determining components of the EC-coupling 
opens the door for future clinical studies, 
which will precisely identify the molecular 
dynamics of myocardial ion channel signalling in  
human disease.
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Figure 3: Cardiac conduction. 
Electrical signalling through the myocardium 
couples excitation to contraction by the action of 
voltage-gated ion channels. Radiocaine imaging 
allows quantifying cardiac voltage-gated sodium 
channels in vivo using PET. The dihydropyridine 
derivative [11C]S12968 enables measurements of 
L-type calcium channels in the heart.
PET: positron emission tomography.
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PERSPECTIVE

Taken together, there is a wealth of well-
understood tools for in vivo molecular imaging of 
cardiac function and health, including oxidative  
metabolism, adrenergic and cholinergic innervation, 
and myocardial electrical conduction (Table 1). 
The majority of these tools have already been 
validated in humans, displaying minor radiation 
exposure, or have reached the stage of clinical 
translation, allowing widespread clinical studies in 
the future. Further evaluation in clinical trials will 

provide data on the impact of molecular imaging 
on changing diagnosis, treatment, and prognosis. 
We are convinced that the growing infrastructure  
of clinical PET magnetic resonance cameras will  
play an integral role in expanding the use of 
molecular imaging in cardiology, in particular with 
recent advances in cardiac gating reconstruction.76 
The combined information of structural integrity  
and changes in the cardiac molecular machinery 
will not only yield impactful insights in  
basic research but will also improve individualised  
patient care.

Table 1: Summary of molecular imaging tools and their (bio)medical application(s).

*Only tested in animal models; **only tested in first-in-human clinical trials; potential future applications  
in italics.
AChE: acetylcholinesterase; DCM: dilated cardiomyopathy; FA: fatty acid; LTCC: L-type calcium channel; 
Nav: voltage-gated sodium channels; NAT: noradrenaline transporter; TCA: tricarboxylic acid; LQT:  
long-QT.

Radioligand Imaging of Application

Metabolism

[18F]FDG Glucose uptake and retention Myocardial viability6

[11C]palmitate FA uptake, β-oxidation, and storage Diabetes mellitus,9,10 idiopathic DCM11

[11C]acetate TCA cycle flux Hypertrophic cardiomyopathy14

[123I]IPPA FA uptake, β-oxidation, and storage Coronary artery disease, ischaemia17

[18F]F7* FA uptake, β-oxidation, and storage Coronary artery disease,18 ischaemia

[123I]BMIPP FA storage Exercise-induced ischaemia,19  
coronary artery disease20

[18F]FTHA FA uptake and β-oxidation Coronary artery disease,29 pulmonary  
arterial hypertension31

[18F]FTP FA uptake and β-oxidation Type 2 diabetes mellitus34

[18F]FCPHA FA uptake and β-oxidation Coronary artery disease36

Innervation

[123I]mIBG Presynaptic NAT, sympathetic innervation Congestive heart failure43-45

[11C]HED Presynaptic NAT, sympathetic innervation Congestive heart failure48,49

[18F]LMI1195** Presynaptic NAT, sympathetic innervation Congestive heart failure51

[18F]mFBG, [18F]pFBG* Presynaptic NAT, sympathetic innervation Congestive heart failure53,54

[11C]CGP12388 β1-receptors, sympathetic innervation Idiopathic DCM57

[11C]MQNB Muscarinic receptors,  
parasympathetic innervation

Idiopathic DCM,61 myocardial infarction62

[11C]donepezil** AChE, acetylcholine metabolism Congestive heart failure64

[18F]-2-fluoro-A85380** Nicotinic α2β4 receptors, parasympathetic 
innervation

Atherosclerosis67

Myocardial conduction

Radiocaine* Nav1.5 (SCN5A) Brugada syndrome,74 LQT syndrome,  
progressive cardiac conduction defect

[11C]S12968* LTCC Hypertrophic cardiomyopathy75
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