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MEETING SUMMARY

The symposium provided an overview of the prevalence of iron deficiency and the associated disease  
burden in patients with chronic kidney disease (CKD). Prof Kai-Uwe Eckardt gave an overview of the 
prevalence of iron deficiency in patients with CKD not undergoing dialysis and addressed the challenge of 
diagnosing iron deficiency in this patient population based on the definitions currently used. Prof Tomas 
Ganz then reviewed the pathophysiology of iron metabolism, and explained the complex interplay of 
hepcidin in making iron available for erythropoiesis. The symposium concluded with a presentation from 
Prof Jolanta Małyszko who reviewed the methods of determining iron status among patients with CKD and 
compared data on the benefits and risks of intravenous (IV) and oral iron therapy.

Prevalence of Iron Deficiency in 
Patients with Chronic Kidney Disease:  

A Matter of Definition?

Professor Kai-Uwe Eckardt

The three main causes of renal anaemia are 
erythropoietin (EPO) deficiency, iron deficiency, 
and inflammation. Although iron deficiency is a 

cause of renal anaemia, it can also manifest in other 
ways. Diagnostic methods of measuring tissue  
iron content include bone marrow biopsy (an  
invasive procedure) and liver magnetic resonance 
imaging, which is not routinely available. The 
use of surrogate markers such as ferritin and the  
transferrin saturation (TSAT) as diagnostic tools is 
routine clinical practice, although they come with 
several limitations, including being influenced by  
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the presence of inflammation. In the general 
population, the threshold for the normal levels of 
these surrogate markers is lower than if measured 
in a population of patients with CKD on dialysis, 
but the appropriate cut-offs for patients with CKD 
not on dialysis (ND-CKD) is less clear. A recent 
systematic review concluded that guidelines1 
recommend the use of higher thresholds of ferritin 
and TSAT in patients with ND-CKD. When looking  
at a range of interventional iron studies in patients 
with ND-CKD, the inclusion criteria for iron  
parameters also stipulate higher threshold values 
for ferritin and TSAT. However, when using such 
high threshold values in patients with ND-CKD, 
the frequency of ‘iron deficiency’ in this patient 
population is high. An analysis of data from the 
National Health and Nutrition Examination Survey 
(NHANES) found that the majority of patients  
with CKD had levels of serum ferritin <100 ng/mL  
or TSAT <20%.2 

The German Chronic Kidney Disease (GCKD) study  
is an observational prospective cohort study that  
aims to increase the understanding of the natural 
course of CKD, by identifying and validating the 
risk factors and markers for the manifestation, 
progression, and complications of CKD. This study 
recruited over 5,000 patients3 and an analysis of  
iron parameters revealed that the majority of 
patients do not meet the target levels established 
in CKD haemodialysis patients. Whether this  
indicates a high prevalence of iron deficiency 
or impropriety of such cut-off values in 
patients with less advanced CKD, is difficult to  
define. In conclusion, diagnosis of iron deficiency  
in patients with ND-CKD remains a challenge.  
The risk-benefit relationship for treatment of these 
patients rather than specific laboratory values  
should guide therapy.  

Iron Pathophysiology: Its Complexity 
and Our Knowledge Gaps

Professor Tomas Ganz

There are two kinds of iron regulation in the body. 
The first is systemic regulation, whereby the 
organism regulates its dietary iron absorption, 
the concentration of iron in extracellular fluid,  
and iron storage. The second is cellular regulation, 
whereby iron uptake and subcellular distribution are  
controlled at the level of each individual cell. 

Erythrocytes are made in the bone marrow and 
contain iron; each millilitre of packed erythrocytes 
represents a milligram of iron. The lifecycle of an 
erythrocyte is 110–120 days, after which it is taken 
up by macrophages in the spleen and liver, and the 
iron is transferred to the plasma, where it binds  
to transferrin and circulates until it is taken 
up by the bone marrow again to make more  
erythrocytes (Figure 1). 

Due to the lack of excretory mechanisms, very little 
iron is normally lost from the body; however, in 
patients with CKD and those on dialysis this loss is 
increased. The usual homeostatic processes ensure 
that increased losses in iron are compensated,  
either by increased absorption of iron in the 
small intestine and duodenum, or the use of 
iron from the liver where surplus iron is stored.  
These compensatory mechanisms are greatly 
affected during infection and inflammation, leading 
to a reduction in plasma iron concentrations known 
as ‘hypoferraemia of inflammation’, eventually 
leading to the development of anaemia due to a 
reduced production of erythrocytes.

Erythropoietic stimulation, a process that results 
in the production of more erythroid precursors 
involved in the generation of erythrocytes, requires 
additional iron to be absorbed into the duodenum, 
or taken up from hepatocytes into the plasma.  

Figure 1: Overview of systemic iron metabolism.
Fe: iron; PRBC: packed red blood cells; Tf: transferrin.
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This is a normal physiological process and often 
occurs during bleeding or if EPO is administered. 
The chief regulator of iron homeostasis is 
hepcidin, which is secreted by hepatocytes as the  
84-amino-acid preprohepcidin and then cleaved  
to a 25-amino-acid bioactive hepcidin by the  
prohormone convertase furin.4 Hepcidin regulates  
intestinal iron absorption and iron distribution in  
tissues by binding to the ferroportin receptor, 
a 12-transmembrane-segment protein that is  
present in macrophages, in the duodenum, on 
hepatocytes, and in the placenta.5-7 Binding of 
hepcidin to the ferroportin receptor results in its 
degradation8 and decreased cellular iron export.  
When hepcidin is low, duodenal enterocytes absorb  
dietary iron and export it into the blood, but high 
hepcidin inhibits these processes. Thus hepcidin 
regulates dietary iron absorption and the influx of 
iron to the plasma at the level of iron absorption,  
and also similarly at the level of iron recycling and  
at the level of release from stores.

Hepcidin levels are regulated by levels of iron in the 
plasma, iron stores in the liver, and erythropoietic 
signals from the bone marrow. Administration of 
iron and subsequent measurement of hepcidin  
levels have shown that, in response to iron, 
there is a spike in serum iron with an increase  
in serum and urinary hepcidin.9 Detection of  
plasma iron takes place via a complex of  
transferrin receptors (transferrins 1 and 2) and a  
human haemochromatosis molecule on the 
external membrane of hepatocytes that senses 
the concentration of holo-transferrin and conveys 
this message intracellularly, resulting in increased 
hepcidin messenger ribonucleic acid (mRNA) and 
consequently increased hepcidin production. 

Intestinal iron absorption is greatly increased after 
the administration of EPO and in forms of anaemia 
in which erythropoiesis is active, such as non-
transfused β-thalassaemia.10 These observations 
suggest that there is a circulating factor that  
connects erythropoiesis to iron regulation,  
and that this factor is likely produced in the bone  
marrow. One study of five male volunteers who 
were given EPO has shown that serum hepcidin 
levels drop 9–24 hours after administration and  
this effect lasts for at least 5 days, with minor 
reductions in transferrin, ferritin, and levels of 
the transferrin receptor.11 Searches for the factor 
connecting erythropoiesis to iron regulation  
has led to the identification of erythroferrone,  
which is highly expressed in EPO-stimulated 
erythroblasts and acts as an erythroid regulator of  

iron metabolism. During anaemia or hypoxia, 
the kidneys produce EPO which stimulates 
erythroferrone production and in turn suppresses 
the production of hepcidin in the liver, increasing 
iron absorption and making more iron available  
for erythropoiesis.

During infection or inflammation, hepcidin levels 
increase and serum iron levels decrease, as 
demonstrated in an in vivo human endotoxaemia 
model.12 By contrast, in hepcidin knockout  
mice that were given an inflammatory stimulus,  
increased levels of iron were evident,13 
demonstrating that hypoferraemia of inflammation  
is dependent on hepcidin. Patients with CKD  
have hepcidin-dependent anaemia, hepcidin- 
independent anaemia, and a relative lack of EPO.  
Hepcidin-dependent effects in these patients 
are mediated by an increase in inflammatory  
cytokines (e.g. interleukin [IL]-6) that increase  
hepcidin and cause iron trapping in macrophages, 
resulting in a reduction in available iron and 
the restriction of haem and haemoglobin  
synthesis and erythropoiesis. Hepcidin-independent 
effects in patients with CKD include shortened 
erythrocyte lifespan and the direct suppression of  
erythropoiesis by cytokines. In patients with 
progressive CKD, levels of hepcidin were higher 
and directly proportional to the severity of kidney  
disease, compared with paediatric or adult  
controls.14,15 Increased circulating hepcidin, resulting 
from inflammatory stimulation of hepcidin  
production and decreased hepcidin clearance, 
restricts the release of iron into the plasma, 
causing hypoferraemia. IV iron administration 
loads macrophages with iron, thereby stimulating 
ferroportin synthesis in macrophages. Increased 
ferroportin facilitates the export of iron trapped 
in macrophages out of the cell for erythropoiesis, 
overcoming the effect of high levels of hepcidin 
in the plasma and making more iron available for 
stimulated erythropoiesis. 

Diagnosing and Treating Iron 
Deficiency/Iron-Deficiency Anaemia: 

Meeting Your Patient’s Needs

Professor Jolanta Małyszko

The typical patient undergoing haemodialysis 
has impaired EPO production and EPO receptor  
function, impaired iron absorption, iron loss 
during their haemodialysis sessions, inflammation, 
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and increased iron utilisation (following the  
administration of EPO-stimulating agents), all of 
which can lead to iron deficiency and anaemia. 
Although patients with ND-CKD appear to be 
less anaemic, they are still iron deficient as a 
result of impaired iron absorption and repeated 
venepuncture, with approximately 60% of patients 
with ND-CKD who start on dialysis being deficient 
in iron.16 Assessment of iron deficiency prior to 
iron therapy is important; this is usually done by 
measuring the levels of serum ferritin, serum iron, 
TSAT, and total iron binding capacity; and assessing 
reticulocyte haemoglobin content, measuring 
occult blood in stools, determining red blood cell 
indices, and measuring levels of haemoglobin.17  
Iron stores should be evaluated and non-renal 
causes of anaemia should be excluded from this 
assessment.17 Often, defining iron deficiency using 
serum ferritin levels and TSAT is difficult in the  
CKD population, as these biochemical markers 
can often be affected by acute-phase reactions, 
particularly those seen in inflammatory disease 
states such as diabetes and cardiovascular disease, 
diseases that commonly occur in this population.  
The advantages of assessment of iron stores using 
serum ferritin levels as a measure include: high 
specificity of low levels of this haematological 
parameter being indicative of iron deficiency;18 

its correlation with body iron stores in healthy 
individuals;19 and its ease-of-use, moderate cost, 
and wide availability. However, normal or high  
serum ferritin does not exclude functional iron 
deficiency20 and there are also observed gender 
differences in this measurement.21 In contrast, 
TSAT is a more reliable measure of iron deficiency 
than serum ferritin as it is more sensitive18 and  
the absence (or near-absence) of sustainable 
iron in the bone marrow correlates with TSAT 
<20%.21 It must be noted that, in patients 
undergoing dialysis, there is 17–70% diurnal  
variation in TSAT levels20,21 and levels can  
be affected by inflammation, malnutrition,  
and chronic disease, interfering with its reliability  
as a measurement of iron deficiency.21 

Clinical guidelines recommend treating iron-
deficiency anaemia with oral or IV iron  
before initiating other anaemia management,22,23  
as optimal red blood cell production requires 
iron for haemoglobin synthesis.24,25 Iron losses  
in patients with CKD undergoing haemodialysis  
can be attributed to repeated laboratory  
tests, accidental losses during haemodialysis  
and other bleeding events, blood retention in  
the artificial kidney and tubing, and normal iron  
losses; these incremental losses can result in  
the loss of up to 3,000 mg of iron per year.18  

Figure 2: Primary endpoint results of the FIND-CKD study.30

FCM: ferric carboxymaltose; HR: hazard ratio; CI: confidence interval. 
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In patients with CKD on haemodialysis,  
the administration of parenteral iron is routinely  
employed due to the loss of blood associated  
with haemodialysis, the need for adequate levels  
of iron in response to EPO administration,  
and because patients are often unable to respond 
to oral iron. In ND-CKD patients, oral or IV iron 
therapy is initiated depending on the severity 
of anaemia. ND-CKD patients with severe 
anaemia may have gastrointestinal intolerance 
for oral iron therapy and their iron deficiency 
is unlikely to be corrected within 3 months of 
receiving oral iron administration. As in patients  
on haemodialysis, those receiving EPO-stimulating 
agents are also recommended for IV iron therapy.22

Oral iron treatment offers several advantages: 
it is widely used, inexpensive, and easily  
administered,20,26 with no requirement for outpatient 
visits.20 However, adherence can be a problem, 
the underlying blood loss pathology is often not 
resolved,27 and iron absorption can be inhibited due 
to other medications or diet.28 Oral iron can also 
lead to frequent gastrointestinal side effects, such  
as nausea, constipation, and diarrhoea.28

IV iron treatment has shown benefits in patients  
with ND-CKD. The FIND-CKD study was the 
largest and one of the longest (56-week) 
randomised studies comparing IV and oral iron 
in patients with ND-CKD.29 The study recruited  
>600 patients with a haemoglobin level of  
9–11 g/dL, serum ferritin <100 µg/L, or serum ferritin  
<200 µg/L + TSAT <20%. The three treatment 
groups were IV ferric carboxymaltose (FCM)  
(200 and 1,000 mg) and oral ferrous sulphate  
(200 mg iron/day), with a primary endpoint of  

time to initiation of an alternative treatment for  
anaemia or occurrence of a haemoglobin trigger  
(specified as two consecutive haemoglobin values  
<10 g/dL on or after Week 8, without an increase of 
≥0.5 g/dL between consecutive values). Secondary 
endpoints included the percentage of patients with 
an increase of haemoglobin ≥1 g/dL, and a change 
in haematological and iron indices. Results showed 
that 76% of patients with ND-CKD maintained 
a haemoglobin level ≥10 g/dL or did not require  
further anaemia treatment when treated with FCM 
targeting high serum ferritin levels (Figure 2). 

FCM targeting of a higher ferritin level also  
achieved a faster and greater increase in  
haemoglobin levels versus oral iron. High ferritin  
FCM also resulted in the desired serum ferritin  
targets being achieved, and TSAT levels were 
maintained within guideline recommendations 
versus oral iron for all time points (p<0.001).29  
There were no changes in adverse events between 
the FCM groups targeting high and low serum  
ferritin levels, but there were higher rates of adverse 
events leading to treatment discontinuation in the 
oral iron group (Figure 3). Importantly, there was 
no sign of renal toxicity in the FCM group targeting 
ferritin levels of 400–600 μg/L.

IV iron therapy is well established in patients on 
haemodialysis, however the benefits of IV iron 
therapy beyond red blood cell management is 
still a point of discussion in ND-CKD patients, 
although the FIND-CKD, a 1-year study with FCM, 
suggests a faster and greater haemoglobin response  
with IV iron compared with oral iron in ND-CKD  
patients.29 Further research to establish benefits  
and risks of IV iron therapy is desired.31

Figure 3: Safety results across treatment groups in the FIND-CKD study.30

FCM: ferric carboxymaltose; AE: adverse events; SAE: serious adverse events. 
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