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ABSTRACT

Previous studies have demonstrated that the vision of one’s own body, or of external embodied limbs, 
can lead to pain relieving outcomes. Analgesic effects have also been related to the vision of illusory 
limb movements. Nonetheless, whether these two processes can be put together to obtain a summatory  
analgesic effect is not yet clear. The aim of this work was to investigate if it is possible to combine the 
analgesic effects of looking at one’s own body with those deriving from the illusion that one’s own limb is 
moving. Thirty-eight healthy participants underwent four visual conditions in immersive virtual reality while 
their heat pain thresholds were measured. In different conditions the subject watched from a first-person 
perspective: i) a still virtual arm, ii) a moving virtual arm, iii) a still non-corporeal object, and iv) a moving  
non-corporeal object. All participants were asked to keep their arms completely still during the visual 
exposures. After each condition, participants answered questions about their illusory experience. Our results 
show that the vision of the ‘own’ body significantly increased participants’ pain threshold as compared to 
the vision of the non-corporeal object. However, no statistically significant analgesic effect of vision of  
the virtual arm movement was found. The implications and limitations of this study are discussed.

Keywords: Virtual arm, virtual reality (VR), body ownership, pain threshold, pain modulation, multisensory 
integration, illusory kinaesthesia.

INTRODUCTION

The relationship between pain perception and 
body-part movement is not new. Many studies have 
shown how strong the bidirectional relationship 
between the two can be.1 However, what is relatively 
new are studies relating limb pain and movement 
representation techniques such as mirror therapy, 
motor imagery, and movement observation.2,3  
For instance, in the classic mirror therapy technique, 
patients with phantom limb pain move the healthy  
limb while watching its reflection on a mirror 
positioned in front of them, namely between the 
healthy limb and the residual limb. In this way, 
the patient has the illusion that the missing limb 
is back on its site and is fully functioning. The 
visual exposure to the illusory movement allows 
the reduction of the patient’s perceived pain.4,5 

This is because of a modification of the body  
representation, which embodies the reflected limb,  
replacing the missing paralysed phantom one.6 At a  
neural level, studies making use of brain 
stimulation techniques have shown a link between  
pain states and motor neural networks, finding that  
a stimulation of the latter may positively translate  
into effective pain management.7-10 In one study 
combining transcranial direct current stimulation 
of the motor cortex and visual illusion on patients 
with spinal cord injuries, Soler et al.11 found that, 
despite transcranial direct current stimulation and  
visual illusion being both valid analgesic techniques,  
the combination of the two yielded the greatest  
and longest lasting pain relief. In a successive 
work, Villiger et al.12 found that the exposure to 
illusory own limb movements via a non-immersive  
virtual reality (VR)-augmented technique improved 
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neuropathic pain in patients with incomplete spinal 
cord injury. Similarly, watching a video of hand 
movements led to a body site-specific increase 
of the pressure pain threshold in a group of  
healthy participants.13 

Interestingly, not only the vision of limb movement, 
but also the vision of the own body has been 
shown to yield analgesic benefits. Although some 
studies failed to find such an effect, the majority of 
studies have found a reduction of pain at the sight 
of the own body that holds true even during the  
observation of prosthetic or virtual body parts 
provided that these were perceived as belonging  
to the participants’ own body.14

In support of this body-related visually induced 
analgesia, studies have pointed  at an activation 
of the inhibitory GABAergic interneurons in the 
somatosensory areas in response to the vision of  
the own body.15-17 After all, a strong connection 
between internal body representation and pain 
conditions has been highlighted in several studies 
taking into account chronic pain patients that 
reported a distorted body image.18 

VR is a tool that has been effectively used in 
neuro-rehabilitation and neuroscience, including 
pain management. For instance, it has been 
shown that VR can be effectively used as an  
adjunctive treatment in patients with severe 
burns, and that its effects are comparable to 
opioids.19-21 Interestingly, immersive VR (“a typical 
immersive VR system delivers stereo vision that is 
updated as a function of head tracking, possibly 
directional audio, and sometimes some type of 
limited haptic interface”)22 gives the possibility to 
display digital characters (avatars) that can be seen 
from a first-person perspective (1pp). In this way,  
it is possible to deceive the brain and challenge 
the user’s normal body representation, generating 
body ownership illusions (BOIs) over the avatar’s 
body.23 Based on these premises, in the current 
study we wanted to investigate whether the 
analgesic effects of vision of the own body could 
be added to the analgesic effect of the vision of 
illusory limb movement. To do so, participants 
were exposed to four different visual conditions 
in immersive VR, where either an avatar’s arm or a  
non-corporeal object (i.e. a purple tube) were 
displayed in place of their real arm. Both the avatar’s 
arm and the tube either performed a regular 
movement or kept still, while participants’ arms were 
always still. Importantly, in a previous experiment 
(unpublished data) we found that it is possible to 

induce BOI over a moving avatar’s arm seen from a 
1pp, despite the visuo-motor mismatch between the 
participant’s still limb and the avatar’s moving limb. 
Increasing ramps of heat stimuli were applied to 
the participants’ wrists during the visual exposures.  
Our hypotheses were that participants’ pain 
thresholds would be higher during the conditions 
where the avatar’s arm was displayed, and highest 
during the vision of the moving avatar’s arm.  
We also expected to find stronger BOIs in the 
body conditions, which were likely to be highest 
during the vision of the still avatar’s arm (because 
of multisensory correspondence with the real arm).  
The strongest feeling of own arm movement illusion 
was predicted to be found in the avatar’s arm  
moving condition.

MATERIAL AND METHODS 

Participants 

Forty-two subjects were initially recruited for the 
experiment, a sample size based on previous similar 
studies.24-28 Four of these were discarded because 
their pain threshold was <40˚C,29 one because of 
an instructions breach, and another one because 
they were ambidextrous. Therefore, 36 healthy  
participants (20 females, mean±standard deviation 
[SD] age: 24.9±4.7 years, age range: 20–45) were 
included in the final analysis. They were all right-
handed (mean±SD: 91.42±11.65, range: 62.5–100) 
according to the short version of the Edinburgh 
Handedness Inventory.30 This was important 
because stimuli induction and visual representation 
involved the use of the right arm; therefore, only 
right-handed participants were considered in order 
to rule out possible confounding factors due to  
laterality, and to increase homogeneity within the 
sample. They had normal or corrected-to-normal 
vision, no history of neurological disorders, and 
no other condition potentially interfering with 
pain sensitivity (e.g. drug intake). Upon arrival at 
the laboratory they were asked to read and sign a 
consent form. The experiment was approved by  
the local ethics committee and was in accordance 
with the Declaration of Helsinki.

Virtual Reality System 

The stereoscopic head-mounted display (HMD) was 
an Oculus Rift DK2 (Oculus VR, Irvine, California, 
USA) with a resolution of 960x1080 per eye 
and a field of view of 100˚, displayed at 60 Hz.  
The virtual environment was programmed using the 
Unity platform (Unity Technologies, San Francisco, 
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California, USA). Noise isolation was ensured by the 
administration of pink noise via headphones, with a 
constant volume set at 70 dB sound pressure level. 

Thermal Stimulation  

Thermal heat stimuli were delivered by means 
of a TSA-II Neuro Sensory Analyzer (Medoc Ltd.,  
Ramat Yishai, Israel), with a 30x30 mm thermode 
tied with a Velcro® strap on the palmar side of the 
right wrist. The probe temperature was increased 
from normal skin temperature (constant baseline 
temperature=32°C) at 2°C/s. Participants were 
asked to press a button with their left hand as 
soon as they perceived the stimulation as being 
painful. Immediately after pushing the kill-switch 
button the temperature reached was recorded 
as the pain threshold and the probe temperature 
rapidly decreased to the baseline level (32°C). 
A fixed maximal temperature of 51°C was set for  
safety reasons. 

Procedure  

Upon arrival, participants were invited to sit on 
a chair and to read and sign the consent form. 
Then an experimenter secured the thermode on 
the participant’s right volar forearm close to the 
wrist, with a Velcro strap, ensuring the surface of 
the thermode remained in contact with the skin 
evenly. Before donning the HMD, participants were 
familiarised with the heat stimuli.

As the participants donned the HMD the room 
lights were turned off and the pink noise played. 
Regardless of the visual condition they were asked  
to visually explore the virtual scenario, and in 
particular to look down as if they were looking at 
their real body. All subjects went through the same 
four visual conditions (within subject design):  
i) a virtual body (avatar) seen from the 1pp, with 
its right arm still, ii) as in ‘i’ but the avatar’s right 
arm moved, iii) no virtual body, only a virtual 
tube in replacement of the virtual right arm, and  
iv) as in ‘iii’ but the tube moved (see Figure 1 for 
all visual conditions). The conditions differed on 
the movement because the virtual object could be 
still or in motion, and on the nature of the virtual 
object, which could be similar to a real human arm 
or a simple purple tube. All participants completed 
the four conditions, with the order of the conditions 
being balanced across participants. The movement 
consisted of a constant angular speed (ω) of 5.0, 
and the object moved 22.5° towards the right and 
22.5° towards the left horizontally, using the elbow 
as a pivot.

To match participants’ physical features as much 
as possible, both the sex (male or female) and 
the avatar’s skin colour (black or white) was  
pre-selected. Care was taken to match the position  
of the real participant’s body to the virtual body as  
well as the real right arm and the right virtual 
arm/tube; the participants were asked to mimic 
the avatar’s body posture as much as possible, 
particularly for the right arm position, until they 
felt perfectly co-located with the virtual body. 
Participants were asked to keep their arms 
still during all VR conditions and to focus their 
attention on the right virtual arm/tube. Before the  
visualisation of the virtual scenario, participants  
were asked to lay their right elbow on top of a 
small box, rendered in VR below the avatar’s right 
elbow. This was done to limit the sensorial mismatch 
between the still real arm and the moving avatar’s 
arm/tube (in the movement conditions) to the 
movement itself, and to limit the expected tactile 
sensation that would have been produced by the 
avatar’s arm rubbing the table during the movement. 
To match the avatar’s arms position, participants’ 
lower arms were kept perpendicular to the  
shoulder-shoulder axis and at ˜20 cm distance from 
the torso. 

During each visual condition four heat stimuli 
were provided, with an inter-stimulus interval of  
30 seconds; since the avatar’s arm movement 
was kept constant and the end of the thermal  
stimulation was under the participants’ control, 
the recording of the specific avatar’s arm position 
by the time the heat stimulation was stopped was 
not possible, nor within the scope of this study. 
Each observational condition lasted for about  
2 minutes. At the end of each condition, the thermal 
pain threshold was obtained by averaging the four 
participants’ thresholds. A total of 16 heat ramps 
were administered by the end of the experiment. 
After the fourth heat pain threshold had been 
recorded the visual condition terminated with the 
removal of the HMD and the subject responded to 
the questionnaire. 

Subjective Measures  

A questionnaire at the end of each experimental 
condition was administered to measure the 
subjective feelings experienced by the subjects  
during exposure to VR. Items were partly selected 
from a questionnaire used in seminal work on 
virtual arm ownership.31 The order of the items was 
randomised per each condition and participant. 
Importantly, before the administration of the 
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questionnaires, participants were told that there 
were no right or wrong responses and that the only 
‘right’ response was the one that corresponded 
to their feelings. This was done to ensure that  
the data reflected the genuine experience of the 
participants, hence limiting confounding factors 
such as compliance with ‘ideal’ expected responses. 
To ensure that each item was correctly interpreted, 
the questionnaire was read to the participant by  
the experimenter. Participants answered verbally 
using a 7-point Likert scale, with 1 meaning ‘totally 
disagree’ and 7 representing ‘totally agree’. 

Items:

•	 Q1: During the experiment there were moments 
in which I had the sensation of having more 
than one right arm.

•	 Q2: During the experiment there were moments 
in which I felt as if the virtual arm/tube was my 
own arm.

•	 Q3: During the experiment there were  
moments in which I felt as if my real arm  
was becoming virtual.

•	 Q4: During the experiment there were moments 
in which the virtual arm/tube started to look like 
my own arm in some aspects.

•	 Q5: During the experiment there were moments 
in which I had the sensation that the heat was 
coming from the virtual arm/tube.

•	 Q6: My attention was totally focussed on other 
things, for example, in what I was watching1  
or totally on the thermal stimulus.7

•	 Q7: During the experiment there were  
moments in which it seemed that my  
real arm was moving.

Data Handling  

Single trial pain thresholds (in °C) were averaged 
for each visual condition and subject. Given the 
high variability between participants, a check of 
the outliers was carried out. Out of 144 values, 19 
values were identified as outliers (>1.5-times the SD 
from the group’s mean) and replaced with the mean  
scores of the group for the same visual condition. 

Figure 1: Screenshots of the experimental conditions.
From top left to bottom right: 1) arm still, 2) tube still, 3) arm move, 4) tube move.
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Figure 2: Top row: mean and standard errors of the pain thresholds reported by the participants in each 
condition (from the left: ‘Arm S’, ‘Arm M’, ‘Tube S’, ‘Tube M’). Centre and bottom: mean and standard 
errors of scores reported at each item of the questionnaire. Colours match the same conditions as in the 
ones depicted in the pain plot. Only significant contrasts are denoted.  
*p<0.05, **p<0.01, ***p<0.001 (Bonferroni p-corrected level=0.0125).
Arm S: arm still; Arm M: arm move; Tube S: tube still; Tube M: tube move. 
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Resulting data from all conditions were normally 
distributed according to the Jarque–Bera and 
the Shapiro–Wilk tests32 (all ps>0.05). A 2x2 
repeated-measures ANOVA (two factors: ‘Body’ 
and ‘Movement’, both with two levels) was then 
conducted on mean pain thresholds. The level of 
significance was set at p<0.05. Questionnaire scores 
were averaged across subjects per each item and 
visual condition. The resulting mean scores related  
to each question were subjected to Friedman 
ANOVAs. Post-hoc analysis was carried out with 
Wilcoxon Matched Pairs Tests, with a Bonferroni 
correction applied for the number of possible 
comparisons. These comparisons were carried out 
between ‘arm still’ versus ‘arm move’, ‘arm still’ 
versus ‘tube still’, ‘arm move’ versus ‘tube move’, 
and ‘tube still’ versus ‘tube move’. This resulted in a 
significance level set at p<0.0125. 

RESULTS 

Pain Threshold 

The one-way repeated-measures ANOVA revealed a 
main effect of the factor ‘body’ (F1,35=5.30, p=0.027, 
Partial Eta squared=0.13) so that irrespective of the 
presence of movement, the vision of the avatar’s  
arm was linked to a significantly higher pain 
threshold as compared with the vision of the object 
(Figure 2). No main effect of the factor ‘movement’, 
nor an interaction between the two factors ‘body’ 
and ‘movement’ were found to be significant 
(respectively: F1,35=0.008 and F1,35=0.88, all ps>0.05). 
So, our first hypothesis that there would be a higher 
pain threshold during the vision of the avatar’s arm 
was confirmed, while the second hypothesis that  
the highest pain threshold would be during the  
vision of the avatar’s arm movement was not 
statistically supported.

Embodiment Scores  

Analysis using Friedman ANOVA of Q1 scores 
reported a significant p-level (χ2

3=27.06, p=0.00001). 
The sensation of having more than one right arm 
reported in the ‘arm still’ condition was significantly 
higher compared with the ‘tube still’ condition 
(Wilcoxon post-hoc test, p=0.007) and that in 
the ‘arm move’ versus the ‘tube move’ condition 
(p=0.0003), despite the mean values from all 
conditions being very low. 

On Q2 scores, the analysis with Friedman  
ANOVA showed a significant p-level (χ2

3=44.78, 
p<0.0001). As hypothesised, the sensation of 

ownership towards the virtual corporeal or  
non-corporeal object reported in the ‘arm still’ 
condition was significantly higher than in the ‘arm 
move’ condition (Wilcoxon post-hoc test, p=0.0018) 
and also higher than the one in the ‘tube still’ 
condition (p=0.00004). Furthermore, the sensation 
of ownership reported in the ‘arm move’ condition 
was significantly higher than the one in the ‘tube 
move’ condition (p=0.00084).

The analysis with Friedman ANOVA on Q3 scores 
reported a significant p-level (χ2

3=30.50, p<0.00001). 
The illusion that the real arm was becoming virtual 
was significantly stronger in the ‘arm still’ condition 
compared with the ‘tube still’ one (Wilcoxon  
post-hoc test, p=0.001), and it was also significantly 
stronger in the ‘arm move’ condition compared with 
the ‘tube move’ condition (p=0.003).

Q4 scores, analysed with Friedman ANOVA, 
showed a significant p-level (χ2

3=64.14, p<0.00001).  
As expected, the sensation of similarity between  
the real arm and the virtual object reported in the 
‘arm still’ condition was higher than the one reported 
in the ‘tube still’ condition (Wilcoxon post-hoc test, 
p<0.00001), and the same pattern is reported 
between the ‘arm move’ condition versus the ‘tube  
move’ (p=0.00001).

Analysis using Friedman ANOVA on Q5 scores 
reported a significant p-level (χ2

3=20.59, p=0.0001). 
In particular, the sensation that the heat was coming 
from the virtual arm/tube was stronger in the 
‘arm still’ condition compared with the ‘tube still’ 
(Wilcoxon post-hoc test, p=0.0026). The analysis 
with Friedman ANOVA on Q6 scores failed to  
report a significant p-level (χ2

3=7.7, p>0.05).  
That meant that no significant differences were 
found in terms of attentional resources drawn by  
the different conditions.

Lastly, the analysis with Friedman ANOVA on Q7 
scores reported a significant p-level (χ2

3=13.75, 
p=0.003). A slightly stronger sensation of own arm 
movement was found in the ‘tube move’ condition as 
compared with the ‘tube still’ condition (p=0.008). 
Thus, our original prediction that the highest arm 
movement illusion would be during the vision of 
the avatar’s arm was not statistically supported.  
No other comparison was found to be significant.

DISCUSSION 

The present study aimed at investigating whether  
it is possible to boost analgesia through the 
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