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ABSTRACT

The aetiology of bladder cancer (BC) is still not fully understood. Genetic factors and many different 
pathways could be involved in the formation and progression of the BC. Some investigators have reported 
genetic polymorphisms (GPMs) in various genes which might be associated with BC. As summarised  
below, we have seen an explosion of literature reporting an association between genetic variation and BC 
risk, as well as between GPM and clinical outcome. In this review GPMs are categorised based on their 
primary cellular functions: genes in carcinogen metabolism, DNA repair, cell cycle control, inflammation, 
apoptosis, methylation, genes functioning as G proteins, and cell adhesion molecules. A pathway-based 
genotyping approach, which assesses the combined effects of a panel of polymorphisms that act in the 
same pathway, may amplify the effects of individual polymorphisms and should be more advantageous to 
association study than the candidate gene approach.
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INTRODUCTION

Bladder cancer (BC) is the most common  
malignancy of the urinary tract, the fourth most 
common cancer in men, and seventeenth most 
common cancer in women. 74,690 total cases were 
diagnosed in the United States in 2014, accounting 
for 4% of all cancers.1 Tobacco is the main known 
cause for urothelial cancer (UC) formation. In 
addition, following the skin and lungs, the bladder 
is the main internal organ affected by occupational 
carcinogens. In general, there is a long latency  
period of 10-20 years between the industrial 
exposure and the formation of the BC, thus  
proving a definitive causative relationship is  
difficult. However, there are a variety of occupations 
statistically associated with BC formation, and all  
are industrial in nature. 20-27% of all BCs are 
associated with industrial exposure of some type, 
primarily in areas with a heavy concentration of 
chemical industries.2

It is increasingly clear that genetic factors play a 
critical role in determining the risk of BC. First-
degree relatives of patients with BC have a 2-fold 

increased risk of developing UC themselves, but 
high-risk of UC families are relatively rare. The 
inherited risk of BC formation appears to affect all 
stages of urothelial carcinoma and is not associated 
with BC formation at an earlier age. Unfortunately, 
there are no clear Mendelian inheritance patterns, 
making classic linkage studies impossible.

GENETIC POLYMORPHISM (GPM) 

GPM is the occurrence in the same population of  
two or more alleles at one locus, each with  
appreciable frequency.3 Geneticists use the term 
GPMs to describe the inter-individual, functionally 
silent differences in DNA sequence that make 
each human genome unique. There are several 
polymorphisms that seem to be related to the 
formation of BC, in particular the susceptibility 
to environmental carcinogens. Many different 
mechanisms such as, metabolism of carcinogens, 
DNA repair, cell cycle checkpoint control, apoptosis, 
and other interconnected cellular processes 
constitute a network that mediates the toxicologic 
response of the bladder micro ecosystem. In the 
following sections, the association between GPMs  
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of these key cellular mechanisms, BC risk, and 
disease progression is described.

Carcinogen Metabolism 

Individual differences in cancer susceptibility may be 
explained to a certain extent by genetic differences 
in metabolic activation and detoxification of 
carcinogens. The dynamic equilibrium between 
carcinogen-activating enzymes and detoxifying 
enzymes might be fundamental to determine the 
cell fate after exposure. Cytochromes P-450 (CYPs) 
is the key metabolic enzyme family capable of 
metabolising drugs and chemicals. The metabolism 
of a toxicant consists of two phases: Phase I 
enzymes, mainly CYPs, typically involved in the 
activation of carcinogens, whereas multiple Phase II 
enzymes generally function to detoxify carcinogens. 
The balance between Phase I and II enzymes 
often determines the accumulation of reactive 
intermediates, which may cause oxidative stress  
and toxicity.

CYP1A1 is an important Phase I xenobiotic 
metabolising enzyme, well known for its  
involvement in the metabolic activation of tobacco 
procarcinogens such as polycyclic aromatic 
hydrocarbons and aromatic amines. It is a highly 
polymorphic gene with more than 11 alleles thought 
to lead to amino acid changes. The majority of the 
eligible studies observed no significant association 
between CYP1A1 mutations and BC risk.4,5 No 
significant association was found between CYP1B1 
polymorphisms and BC risk in previous published 
studies.5,6 Hepatic CYP1A2 is believed to play 
an important role in the metabolic activation of 
arylamines. Humans exhibit considerable inter-
individual variability in CYP1A2 activity. This inter-
individual variation is most likely caused by both 
environmentally and genetically determined factors. 
Studies failed to show direct association between 
CYP1A2 polymorphisms and BC risk, however we 
have findings that the carcinogenic potential of this 
metabolic gene may depend upon the presence 
of its major inducer, cigarette smoking, and it is 
associated with increased risk of BC in subjects who 
are exposed to tobacco smoke.7-10

CYP2D6 encodes debrisoquine hydroxylase, whose 
substrates include aromatic amines, tobacco 
nitrosamines, and a wide range of commonly  
prescribed drugs such as antiarrhythmics, 
antihypertensives, alpha-blockers, monoamine 
oxidase inhibitors, morphine derivatives, 
antipsychotics, and tricyclic antidepressants.  

Current studies show CYP2D6 did not appear to 
influence BC susceptibility.10,11 CYP2E1 catalyses the 
metabolic activation of various tobacco-related 
N-nitrosamines, such as N-nitrosodimethylamine 
and N-nitrosonornicotine, both of which are 
potent bladder carcinogens in experimental 
animals. The current studies suggested that the 
CYP2E1 polymorphism may be associated with BC 
susceptibility, especially in Caucasians.12-14

NADPH quinine oxidoreductase-1 (NQO1), a 
chemoprotective enzyme, plays an important 
role in protection against endogenous and  
exogenous quinines by catalysing two or four- 
electron reductions of these substrates. Rich  
researches suggest that NQO1 GPM contribute 
to BC development, especially for NQO1  
C609T polymorphism.12,15-19

Glutathione S-transferases (GST) comprises a major 
group of Phase II enzymes that play the key role 
in the detoxification of xenobiotics, environmental 
substances, and carcinogenic compounds. GSTM1 
and GSTT1 are two extensively studied GST genes 
for their association with BC risk. A majority of the 
studies suggest that the null genotypes of GSTM1  
are significantly associated with increased risk 
of BC.20-23 Also Ha et al.24 concluded GSTM1 tissue 
genotype has a predictive value for determining 
recurrence in non-muscle invasive BC.24 The results 
from many studies, which indicate increased 
BC risk is associated with GSTT1 genotypes, are 
controversial.10,25,26 There are studies suggesting  
GSTT1 genotype as a prognostic indicator,  
independent of traditional pathologic prognostic 
parameters, for recurrence, progression,27,28 and 
Bacillus Calmette-Guérin (BCG) therapy response.29 
Studies did not find any significant association 
between BC and GSTA1 and GSTP1 polymorphisms.30

SULT1A1 appears to be the principle human 
SULT (soluble sulfotransferases) form involved 
in the elimination of most phenolic xenobiotics, 
as well as some other substrates. The Arg213His  
polymorphism in SULT1A1 has a strong influence 
on the activity and stability of the enzyme. Li et 
al.31 described a statistically significant protective 
role of the variant His allele. UDP-glucuronosyl 
transferases (UGT) represents another major 
Phase II drug-metabolising enzyme family sharing 
roles in detoxification and elimination of endo 
and xenobiotics. Contrary to previous studies, 
Zimmermann et al.32 documented that there is 
no relationship between UGT2B7 polymorphism  
and BC.
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N-acetyltransferases (NAT) catalyses the metabolic 
activation of aromatic and heterocyclic amine 
carcinogens by acetylation. There are two distinct 
NAT isozymes existing in the human population NAT1 
and NAT2. The NAT2 gene is subject to extensive 
polymorphism, which segregates the populations 
into rapid, intermediate, and slow acetylator 
phenotypes. Controversial results exist for the NAT1 
polymorphism and BC relationship but the majority 
highlight that an association is found between the 
NAT1 polymorphisms investigated, and BC risk.33,34 
NAT2 polymorphisms and their association with  
BC have been extensively studied. There are  
consistent reports on the connection of the NAT2 
slow acetylator polymorphisms with higher BC 
risk, both independently and in association with  
smoking or occupational exposures, especially 
arylamine. Also there are some papers  
demonstrating conflicting results. Selinski et al.35 
identified an ‘ultra-slow’ acetylator phenotype 
associated with BC risk, though slow acetylators 
in general were not associated with BC risk.35 Also, 
Pesch et al.36 found that no interaction was detected 
between NAT2 and any occupational exposure. The 
combined effect of NAT1 and NAT2 genotypes were 
also addressed in some of the studies.37

Myeloperoxidase (MPO), catechol-O-
methyltransferase (COMT), manganese superoxide 
dismutase (MnSOD), and glutathione peroxidase  
1 (GPX1) are single genes that encode  
four critical Phase II enzymes modulating  
carcinogen metabolism. MPO produces a 
strong oxidant, hypochlorous acid, and also  
activates procarcinogens in tobacco smoke. COMT  
catalyses the methylation of various endobiotic  
and xenobiotic substances, preventing quinine  
formation and redox cycling. MnSOD is one of the 
primary enzymes that directly scavenge potential 
harmful oxidising species and can be induced by 
free radical challenge and cigarette smoke. GPX1 
is a selenium-dependent enzyme that participates 
in the detoxification of hydrogen peroxide and 
a wide range of organic peroxides with reduced 
glutathione. Huang et al.38 concluded The MPO 
GPMs might modify the arsenic methylation profile 
and BC progression. No effect was observed  
for BC risk with COMT polymorphism.39 GPX1  
Pro198Leu polymorphism significantly increased 
susceptibility to BC, while the MnSOD Ala-9Val 
polymorphism was not associated with BC risk.40,41

DNA Repair 

DNA damage, via constant attack from numerous 
chemical and physical agents, can initiate cancer. 
About 10,000 lesions are introduced in each cell 
every day. Our DNA repair mechanisms prevent 
the accumulation of the undesirable DNA injuries. 
Nucleotide-excision repair (NER), base-excision 
repair (BER), homologous recombination, non-
homologous end-joint, and mismatch repair are 
the main DNA repair systems. Each of these repair 
systems can recognise and fix an array of damage.
In the meantime, these repair systems form an 
intertwining network that functions cooperatively.
GPMs of DNA repair proteins with a suboptimal  
DNA repair capacity have been linked to increased 
cancer risk.

NER is the most versatile DNA repair pathway. 
It operates primarily on bulky lesions caused by 
environmental mutagens, such as UV light and 
polycyclic aromatic hydrocarbons. Xeroderma 
pigmentosum complementation group C (XPC) and 
excision repair cross-complementation group 6 are 
essential in the NER damage recognition step with 
different target specificity. Dou et al.42 indicates that 
XPC Lys939Gln polymorphism may contribute to 
the development of BC risk. Meta-analysis of Liu et 
al.43 suggested that XPG Asp1104His polymorphism 
was not associated with BC risk. Up to now, 
many polymorphisms in the XPD gene have been  
identified, and the Lys751Gln is one of the most 
important polymorphisms. There are meta-analyses 
indicating XPD Lys751Gln polymorphism might 
contribute to the risk of BC.44

BER proteins mainly work on damaged DNA bases 
arising from endogenous oxidative and hydrolytic 
decay of DNA. Apurinic/apyrimidinic endonuclease 
1, a rate-limiting enzyme of BER, has endonuclease 
function. Its relationship with BC is stil suspicious.45 
Hundreds of single nucleotide polymorphisms  
(SNPs) of XRCC1 have been validated and three of 
them were most extensively investigated: Arg194Trp 
in Exon 6 (rs1799782), Arg280His in Exon 9  
(rs25489), and Arg399Gln in Exon 10 (rs25487). 
The overall results for these investigations suggest 
that XRCC1 Arg399Gln polymorphism might be a 
moderate risk factor for BC.

Cell Cycle (CC) Control 

CC controls are biochemical pathways that regulate 
CC progression in response to DNA damage. 
Losses of CC control appear to be early steps in 
the development of carcinogenesis and, ultimately, 
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cancer progression. The regulation of the CC 
is governed by both positive and negative CC  
regulatory factors. p53 is a transcription factor that 
acts as a fundamental regulator of CC arrest in  
the cell. This is supported by the fact that p53  
is the most frequently inactivated in malignantly 
transformed cells. p53 elicits CC arrest through 
activation of downstream genes such as p21.  
Genetic variants in some of the CC regulators 
were studied for their associations with BC risk. 
p53 mutations have been described in more than 
50% of human cancers. In particular, p53 loss of 
function has been related to the development of 
high-grade muscle-invasive disease. Also Piantino 
et al.46 tested Prima-1 molecule as a new therapeutic 
agent for urothelial carcinomas of the bladder,  
which characteristically harbours p53 mutations.

Inflammation Genes 

There has been compelling evidence supporting  
the hypothesis that chronic inflammation contributes 
to cancer development. A substantial number of 
cancers derive from sites of chronic inflammation. 
Proinflammatory cytokines, growth factors, 
chemokines, reactive oxygen species, and COX-2 
interact in a complex manner in the development 
and progression of an inflammatory environment. 
Genetic variants of inflammatory mediators have 
emerged in recent years as important determinants 
of cancer susceptibility and prognosis. Some of 
these polymorphisms have been linked to BC.

Cytokine proteins have key roles in carcinogenesis. 
On one hand, they are involved in the activation of  
the immune system to limit tumour growth. On 
the other, they may be involved in malignant 
transformation and tumour growth. The interleukin-1 
(IL-1), one of the most potent proinflammatory 
cytokines, influences nearly every cell type and 
functions in the inflammation, cell growth, and 
tissue repair. IL-4 is a key cytokine produced by T 
cells and has an impact on B cell differentiation and 
proliferation. IL-4 inhibits macrophage activation  
and may be involved in cancer formation. Many 
papers exist which propose a strong relationship 
between IL-1 and IL-4, and BC risk.47

Tumour necrosis factor-alpha (TNF-α), a 
multifunctional cytokine, is key in inflammation, 
immunity, and cellular organisation. TNF-α has 
paradoxical roles in cancer, inducing destruction of 
blood vessels and cell-mediated killing of certain 
tumours as well as acting as a tumour promoter. 
The results of several studies do not reach a certain 

conclusion, and the relationship between TNF-α and 
BC remains unclear. Additionally research exists, 
showing an association of tumour stage48 and 
outcome after BCG immunotherapy.49 Transforming 
growth factor beta is a potent inhibitor of epithelial 
cell proliferation and it belongs to the group 
of tumour-derived cytokines. Castillejo et al.50 
concluded that the genetic variants analysed were 
not associated with an increased risk of BC.50

Apoptosis 

Apoptosis plays a central role in cancer  
development. Two separate pathways (intrinsic and 
extrinsic) are able to trigger the caspase cascade 
of the apoptotic pathway. The extrinsic pathway 
is activated by the ligation of cell surface death 
receptors by their corresponding ligands, while 
the intrinsic pathway is triggered by disruption of 
mitochondrial membrane. Mittal et al.51 and Wang 
et al.52 found an association of Death Receptor 4 in  
BC development.

G Proteins 

G proteins are guanine-nucleotide-binding proteins 
that form a super-family of signal transduction 
proteins. The RAS family of monomeric G proteins 
are small GTPases cycling between a GTP-bound 
active state and an inactive GDP-bound state. 
Three of the five human RAS genes - including 
HRAS, KRAS, and NRAS are known to be associated 
with human cancer through mutation and/or over 
expression in tumours. Studies show that HRAS  
T81C SNP moderately increases BC risk.53-55

Cell Adhesion Molecules 

Cell adhesion is essential in all aspects of cell 
growth, cell migration, and cell differentiation. A 
growing body of evidence suggests that alterations 
in the adhesion properties of neoplastic cells may 
be pivotal in the development and progression of 
the malignant phenotype in a range of tumours, 
including BC. E-cadherin (CDH1), a member of the 
cadherin family, interacts with cytoskeletal proteins 
through the catenin complex. E-cadherin seems to 
function as a tumour-suppressor; loss of expression 
and/or abnormal function of E-cadherin leads to 
a loss of cell polarity and derangement of normal  
tissue architecture. Wang et al.56 indicates that 
promoter polymorphism and methylation of 
CDH1 gene may be involved in the development 
and progression of BC. CDH1 gene promoter 
polymorphism and methylation might be promising 
biomarkers for the diagnosis and prognosis of BC.57
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Methylation Gene 

Genome-wide hypomethylation in human 
cancer might be a consequence of decreased 
S-adenosylmethionine (SAM) level. Cancer 
risk might be modified by polymorphisms in 
methyl group metabolism genes that affect 
intracellular concentration of SAM, such as 
methylenetetrahydrofolate reductase and 
methionine synthase. Shi et al.58 present no  
evidence of an association between this 
polymorphism and BC risk.

PERSPECTIVE 

The ultimate goals of molecular epidemiology 
studies are to provide a practical risk-assessment 
model that predicts if an individual is at a higher 
risk of cancer or to tailor cancer therapy (preventive 
or treatment) based on each individual’s genetic 
profile. Unfortunately, we still have a long way to go. 
Hypothesis-driven genetic association studies, using 
either a candidate gene approach or a pathway-
based approach, have given and will continue to 
provide us with very valuable information. However, 
our expectations should not exceed what these 
studies can provide. The magnitude of associations 
by these studies will have limited value in public 
health and clinical care. Continued efforts to 
exhaustively search and genotype all identified  
SNPs (single GPM) with potential functional 
significance in so many genes are costly and 

impractical. Anyone who has a predominant 
slow acetylation phenotype should not take up 
an occupation working with chemicals or dyes. 
Another example might be suggesting inhibition of  
a pathway associated with higher recurrence rates. 
If this is done, an oral therapy might be more 
attractive than catheterisation and administration  
of intravesical chemotherapy.

CONCLUSION

A more serious challenge to current association 
studies is to bypass the inherent limitation of the 
predominantly used candidate gene approach. 
Cancer is a complex multigenic and multistage 
disease involving the interplay of many genetic and 
environmental factors. It is unlikely that any single 
GPM would have a dramatic effect on cancer risk. 
The modest effect of each individual polymorphism, 
although providing valuable information, would  
have very limited value in predicting risk in the  
general population. Therefore, the future of risk 
assessment for multigenic complex diseases needs 
to move beyond the candidate gene approach. 
A pathway-based genotyping approach, which 
assesses the combined effects of a panel of 
polymorphisms that act in the same pathway, may 
amplify the effects of individual polymorphisms  
and should be more advantageous to association 
study than the candidate gene approach.
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