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ABSTRACT

Soft connective tissue calcification is still an intriguing problem due to the high number of genes,  
proteins, and enzymes involved in the process. Numerous epidemiological and experimental studies of 
the ectopic calcification associated with metabolic, inflammatory, and degenerative disorders have  
been performed. Moreover, in the last decade, great efforts have been made in studying the genetic  
disorders leading to soft connective tissue calcification, trying to understand the imbalance between pro  
and anti-calcifying factors in the different disorders, and why calcification occurs only in certain  
body regions (which often differ between the various genetic defects). The rare, inherited disorder  
pseudoxanthoma elasticum (PXE), which is caused by mutations in the ABCC6 gene, is an interesting  
model because the gene responsible is mainly expressed in the liver, whereas calcification affects  
peripheral soft connective tissues. It has been suggested that liver deficiency of the protein encoded 
by ABCC6 directly induces peripheral calcification, although, in contrast, several studies both in humans  
and in transgenic mice indicate that peripheral mesenchymal cells might be permanently involved in  
PXE calcification. In this review, the author suggests that early in development PXE cells may undergo  
epigenetic changes and acquire a permanent pro-calcific signature. However, given the complexity of  
the calcification process and the metabolic inter-exchanges among the different calcific genetic  
disorders, a bioinformatic approach analysing data ranging from genes to functional proteins and clinical  
features may complete the puzzle and provide new therapeutic perspectives in PXE, as well as in other  
calcific disorders.
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fibroblast gene expression, fibroblast epigenetic changes, calcification genetic disorders,  
pseudoxanthoma elasticum.

SCIENTIFIC BACKGROUND 

Soft connective tissue calcification is frequently 
observed in metabolic or degenerative/ 
inflammatory processes, such as diabetes, 
chronic kidney disease, and atherosclerosis,1-3 or 
within necrotic materials, such as in advanced 
atherosclerosis and tuberculosis.4,5 The process has 
also been induced in animals and in cells in vitro 
via treatment with chemicals6,7 or excess vitamins8,9 
in order to understand the metabolic pathways 
involved. Interestingly, mesenchymal cells were 
shown to switch to pro-osteogenic gene expression 
under the influence of various stimuli.8,10,11 In the 

previous decade, great advances have been derived 
from studies on genetic disorders characterised by 
soft connective tissue calcification.

THE CALCIFICATION PROCESS AND 
ITS CONTROL 

Calcification is due to the precipitation of minerals, 
the most abundant of which is calcium phosphate, 
followed by magnesium phosphate, and then  
calcium carbonate and magnesium carbonate.12-14 
Therefore, ectopic calcification is mainly due to 
hydroxyapatite accumulation. Within cells, free 
calcium works as a metabolic controller and its low 
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concentration (about 100-200 nmol/dm3) is finely 
regulated by specific calcium-binding proteins.15-17 
Moreover, mitochondria and the endoplasmic 
reticulum can actively accumulate an excess 
of calcium in order to maintain intracellular ion 
homeostasis.15,16,18 In contrast, calcium concentration 
in the extracellular space is physiologically very 
high (about 1 mmol/dm3),16,18 and it would form 
hydroxyapatite in the presence of phosphate, 
the level of which is, hopefully, finely regulated.19 
Therefore, the concentration of free phosphate 
can be considered as the limiting factor for  
extracellular matrix calcification. 

Despite the various historical names, there are  
two main types of calcification: ‘passive’ and  
‘active’. Passive calcification is a consequence 
of metabolic, hormonal alterations,1-3,7,12 or, more 
frequently, of cell degeneration and death.5,20,21 
In these cases, the intracellular and extracellular 
concentrations of free calcium and phosphate 
become high enough to overcome their solubility, 
with the formation of the rather insoluble form 
of calcium phosphate. Very high intracellular ion 
concentrations can be reached by alteration of the 
cell membrane barrier12 due to deficiency in cellular 
ion-binding proteins and compartments,16,18 or  
by the enzymatic liberation of ions, including  
phosphate derived from nucleic acids and the 
membrane phospholipids of dead cells.22 High 
extracellular ion concentrations may be reached 
in kidney and hormonal disorders, or by erroneous 
diets.1-3,7,8 Moreover, similar to calcification  
associated with atheroma or tuberculosis,1,4,5 vessels  
are scarce in necrotic areas and ions remain 
sequestered for a long time, which favours the 
formation of large mineral precipitates. However, 
modification of the expression of genes involved 
in the homeostatic control of ion solubility 
has also been reported in cases of ‘passive  
calcification’.9,10,23,24 This is not surprising because  
months or even years are necessary in order to 
produce clinically relevant calcification, and time-
dependent, adaptable gene expression of surviving 
cells can occur. 

Active calcification is a dynamic process that  
occurs in the extracellular space of soft 
connective tissues in the absence of metabolic,  
inflammatory, or necrotic events. This process is 
very often age-associated and depends on the 
imbalance of proteins and enzymes that maintain 
the homeostatic control of calcium and phosphate 
ion concentrations within the extracellular space. 
Interestingly, some molecules exhibit opposing 

functions within bone and in soft connective  
tissues, as they seem to favour calcification within 
bone and yet inhibit calcium precipitation in  
the non-bone connective tissues.25-29 Interestingly, 
calcification of soft connective tissues in vivo  
is often associated with, or dependent upon, 
osteoporotic bone decalcification.25

GENES AND PROTEINS INVOLVED IN
ECTOPIC CALCIFICATION 

Exhaustive reviews describing proteins involved 
in ectopic calcification have been published 
recently.24,26,27 Some of these proteins, such as 
osteopontin28 and fetuin,29 mainly function within 
the extracellular fluids and inhibit calcification by 
interfering with crystal growth. Other proteins 
are involved in the regulation of extracellular ion 
concentrations at a local level, such as ectoenzyme 
nucleotide pyrophosphatase/phosphodiesterase 1 
(ENPP1), progressive ankylosis protein (ANK),  
tissue non-specific alkaline phosphatase (TNAP), 
matrix Gla protein (MGP), and many others. 
While all of these proteins and enzymes have 
specific functions, they also form a functional 
network whose overall result depends on the  
polymorphisms and expression of their encoding  
genes, which are often influenced by environmental  
factors such as the surrounding matrix. This  
network is complex and only partially known, with  
inhibition of the expression of one gene inducing  
over or under-expression of other genes also 
involved in the calcification process.25-27,30

CONTRIBUTION OF GENETIC 
DISORDERS TO THE COMPREHENSION 
OF ECTOPIC CALCIFICATION 

In recent years, studies on rare genetic disorders 
characterised by soft connective tissue calcification 
have greatly improved our knowledge of the 
mineralisation process.26,31-33 For the majority of 
these diseases, the causative gene is known and 
transgenic mice are available, often recapitulating,  
at least in part, the clinical features present in  
humans. However, even when calcification is a 
direct consequence of a gene defect, the tissue-
specific ‘interpretation’ of each single gene, 
either normal or mutated, is far from being  
completely understood. 

A typical form of soft connective tissue calcification 
occurs in generalised arterial calcification of infancy  
(GACI), which is a rare genetic disorder caused 
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by loss of function in the gene encoding  
the enzyme ENPP1 that hydrolyses adenosine  
triphosphate to adenosine monophosphate 
and pyrophosphate (PPi). GACI is therefore  
characterised by systemic deficiency of the strong 
anti-calcifying factor PPi within the extracellular 
space.34-36 This induces severe calcification of peri-
articular tissues and arteries, which leads to heart 
failure, even possibly within the first months of  
life.35,36 It is noteworthy that PPi inhibits the 
expression of pro-calcifying genes37 and inhibits 
calcification because it binds hydroxyapatite 
and hinders crystal growth.38 The strong 
effect of PPi deficiency in GACI suggests  
that, among the various anti-calcifying molecules,  
PPi must play a fundamental role, at least in vessels, 
peri-articular tissues, and cartilage. Recently, the 
important role of PPi in calcification has been  
confirmed by the observation that surviving GACI 
patients may present clinical and histological 
features typical of another rare genetic  
disorder, pseudoxanthoma elasticum (PXE), 
which is characterised by skin, retina, and vessel  
calcification,39 and in which matrix calcification 
is associated with, or dependent upon, a series of 
peripheral cell metabolic alterations, among which 
is high TNAP activity and consequent deficiency of 
extracellular PPi.40-42 Apart from PPi, TNAP liberates 
phosphate from a variety of organic molecules, 
including ATP, phospholipids, and even the DNA 
of necrotic cells.43 The expression of TNAP is  
complex, is regulated by circulating and local  
factors, and its activity produces high levels of  
pro-calcific free phosphate.44,45

Within the extracellular matrix, PPi and inorganic 
phosphate are always in a dynamic equilibrium 
determined by the activity of enzymes, kidney 
function, hormones, and diet. Generalised 
calcification due to a high level of phosphate is  
present in chronic kidney disorders,46 with 
alteration of gene expression towards bone- 
specific phenotypes.48,49 Interestingly, administration 
of PPi is able to reduce calcification in  
haemodialysed patients, uraemic mice, and in 
vitro cells.49,50 Therefore, the level of PPi must be 
kept relatively high in peripheral soft connective 
tissues in order to avoid calcification. This is 
also influenced by the activity of ANK, which 
transports PPi from within cells to the extracellular 
space.51 The low level of extracellular PPi present 
in cases of ANK deficiency induces calcification 
of the articular cartilage and dysregulation of  
osteoblastic/osteoclastic differentiation, as seen in 

humans and in transgenic mice.52,53 ANK deficiency 
further confirms the importance of PPi as an anti-
calcifying factor in the extracellular matrix, but also 
stresses the importance of tissue-specific gene 
expression for the maintenance of appropriate  
levels of PPi within the extracellular milieu of  
different body regions. 

Another important anti-calcifying molecule 
is the mature form of MGP. MGP deficiency, 
both in humans54 and in transgenic mice,31 has  
demonstrated the importance of glutamic-acid- 
rich proteins within the extracellular space.55  
In particular, MGP seems to prevent calcium 
precipitation within vessel walls and within  
peripheral soft connective tissues due to its ion-
binding capability56 and also due to its interaction  
with extracellular matrix molecules that have a  
relevant role in calcification.57 As shown in both  
humans and transgenic mice, mutations in the 
MGP gene may lead to a loss of expression or 
deficient maturation of the protein, which causes 
a decrease in its anti-calcifying potential. MGP 
is actively produced by fibroblasts and smooth 
muscle cells, and seems to regulate calcification 
at a local level, although it is present within  
the systemic circulation.58 Moreover, the activity  
of MGP depends on its post-transcriptional  
maturation, i.e. γ-carboxylation of glutamic acid 
residues and phosphorylation of serine residues.59 
These events are governed by specific genes 
and may also depend on exogenous factors 
such as vitamin K.60 Indeed, a study on another 
human genetic disorder characterised by severe  
calcification of skin (vitamin K epoxide reductase 
[VKOR] deficiency), showed that MGP deficiency  
may be due to impairment of the vitamin K cycle, 
which produces the reduced form of vitamin K 
necessary for γ-carboxylation and maturation of 
MGP.61 In addition, calcification in humans may also  
depend on the ability of the microRNA molecule 
miR-133a to regulate expression of VKOR complex 
subunit 1.62 These data once again illustrate  
the complex interdependence of genes and  
environmental factors in the calcification process. 

Low amounts of mature, γ-carboxylated MGP have 
also been observed in PXE, which is characterised 
by calcification of elastic fibres within soft 
connective tissues.63,64 Fibroblasts isolated from 
the dermis of PXE patients produce a low amount 
of γ-carboxylated MGP in vitro.65 Interestingly, 
this immature form of MGP is strongly associated 
with calcified elastic fibres in the dermis of PXE  
patients.66 Low levels of MGP were also observed 
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in the ATP-binding cassette, subfamily C member 
6 (Abcc6) −/− model of PXE.67 Therefore, MGP 
seems to play an important role in the calcification 
process caused by ABCC6/Abcc6 deficiency. Given 
the importance of vitamin K to MGP maturation,  
this vitamin was thought to be directly involved in  
PXE calcification and this was supported by the 
low level of vitamin K measured in PXE patients.68 
However, studies on transgenic mice69 and on 
fibroblasts in vitro70 failed to confirm a role for 
vitamin K in PXE-associated MGP maturation. 
Interestingly, data from PXE fibroblasts in vitro 
showed that vitamins K1 and K2 increase cellular 
protein carboxylation, with the exception of 
MGP.71 However, given the recent observation that 
vitamin K administration reduces mineralisation in  
zebrafish models of PXE and GACI,72 the role 
of vitamin K and of vitamin K-dependent MGP 
expression and maturation should be investigated 
further in both humans and animal models.

CONTRIBUTION OF PSEUDOXANTHOMA
ELASTICUM TO THE UNDERSTANDING
OF ECTOPIC CALCIFICATION 

The current review describes data derived from 
studies on plasma and in vitro fibroblasts isolated 
from the dermis of PXE patients obtained in our 
laboratory through the use of various techniques,  
from molecular biology and gene expression 
to metabolic and structural analyses. PXE is an  
interesting model for studying the calcification 
process. It is a recessive inherited disorder caused  
by mutations in the gene ABCC6, which encodes 
a protein that is a member of the ATP-binding 
cassette (ABC) family of membrane transporters, 
mainly expressed in the liver and kidney and  
much less in other tissues.73 Its role is to  
export substances directly or indirectly involved 
in calcification out of hepatocytes. PXE is  
characterised by progressive calcification of elastic 
fibres, mainly in the medium dermis (Figure 1), in 
vessel walls, and in Bruch’s membrane within the 
retina (Figure 2).39,40,63,64 These organs are located 
far from the liver, kidney, and other major gene-
expressing tissues,73 and therefore it is reasonable 
to accept that plasma from PXE patients is  
deficient in anti-calcific molecules produced and 
secreted by the liver,71 or that peripheral cells,  
such as smooth muscle cells and fibroblasts,  
modify their metabolism towards a more pro-
calcifying phenotype as a consequence of liver 
ABCC6 deficiency.40,41,74 

The substrates of the protein encoded by 
ABCC6 are still under investigation: it has been 
suggested that leukotriene C4, organic anions, 
and glutathione conjugates, as well as synthetic 
compounds, could be substrates.75,76 Data obtained 
through molecular docking and virtual-screening  
approaches indicate that lipids are also potential  
substrates for ABCC6.77 Recent data suggest that 
ABCC6 mediates the release of ATP from  
hepatocytes,78 with mutations in the transporter  
leading to low plasma levels of ATP-derived,  
anti-calcific PPi. Interestingly, a deficiency in 
circulating ATP would be in agreement with the  
markers of oxidative stress observed in the  
plasma of PXE patients79 and in Abcc6 −/− mice,80  
as well as with the low peripheral level of  
anti-calcifying PPi due to the low level of  
substrate available for ENPP1.34-36 Less clear, and 
more indirect, is the effect of plasma ATP  
deficiency on proteoglycan,81,82 lipoprotein, and  
triglyceride83,84 alterations that we and other 
groups have observed in PXE patients, as well as  
in Abcc6 −/−transgenic mice. 

Deficiency in the poorly identified circulating 
factors produced by the liver is suggested to  
favour peripheral calcification in PXE.71 Indeed, 
we and other laboratories have observed that 
the serum of PXE patients has an abnormal  
composition compared with age-matched 
controls because it has a redox potential lower 
than normal, high levels of oxidised proteins and 
lipids,79 and an abnormal amount and quality of 
glycosaminoglycans,82 lipoproteins, triglycerides,84 
and proteins that may directly interfere with  
calcium precipitation, such as fetuin A.29,85,86 These 
alterations in vivo may depend on the specific 
genotype of the PXE patient. However, higher 
levels of cholesterol and triglycerides, as well as 
reduced levels of fetuin A, have been measured in  
transgenic mice that differ only in the ablation of  
the Abcc6 gene.83,86 Therefore, all of the plasma 
alterations observed in PXE patients, with the 
majority being confirmed in Abcc6 −/− transgenic 
mice, may be the result of an age-dependent 
adjustment of a series of interdependent genes 
whose modified expression is due to a loss of 
function in ABCC6. Moreover, as PXE is a genetic 
disorder, these alterations would probably start 
during embryogenesis and therefore profoundly  
and permanently influence mesenchymal cell 
metabolism and differentiation.87
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Several studies have shown that fibroblasts 
isolated from the dermis of PXE patients exhibit 
metabolic behaviour and gene expression that 
is different from sex and age-matched controls. 
Some alterations are evident only in the absence 
of fetal calf serum,84 suggesting that PXE fibroblast 
metabolism in vivo is continuously influenced by 

circulating factors.79,80,82,83,85,86 However, several 
of these metabolic alterations have been shown 
in PXE fibroblasts grown in optimal culture 
conditions in vitro, which suggests an intrinsic  
and permanent abnormal gene expression in these 
cells.41,65,66,70,74,81,84,88-92 Moreover, some of these  
metabolic alterations have also been observed 

Figure 2: The retina of a 45-year-old man (A) and a 45-year old woman (B) affected by pseudoxanthoma 
elasticum. 
Displaying great heterogeneity between patients, calcification of the elastin in Bruch’s membrane  
induces angioid streaks, followed by neovascularisation, haemorrhages, and scarring.

A B

Figure 1: Skin alterations in the neck of a 17-year-old girl (A) and a 35-year-old woman (B) affected by 
pseudoxanthoma elasticum. 
The elastic fibre calcification within the dermis produces confluent papules and redundant skin in the 
affected areas.

A B
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