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ABSTRACT

Diabetic patients are at an increased risk of developing heart failure. The aetiology of diabetic heart 
disease is likely to be multifactorial, ranging from altered myocardial metabolism, increased interstitial 
fibrosis, endothelial dysfunction, microvascular disease, and coronary atherosclerosis. These factors act  
synergistically with resultant myocardial systolic and diastolic dysfunction. The aim of the present review is 
to illustrate the role of multimodality cardiac imaging such as echocardiography, nuclear imaging, computed 
tomography, and magnetic resonance imaging in providing insights into these pathological processes, and 
to quantify the extent of myocardial diastolic and systolic dysfunction.

Keywords: Diabetes mellitus, heart disease, echocardiography, magnetic resonance imaging, computed 
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INTRODUCTION

Diabetes mellitus is an increasingly common  
disease worldwide. Recent estimates suggest its 
incidence has more than doubled over the last three 
decades and that there are currently 347 million  
people living with the condition.1 The risk of 
cardiovascular disease (CVD) has increased 2 to  
3-fold in this population2,3 and half of all diabetic  
patients will die from CVD.4 In particular, heart  
failure is twice as common in diabetic men and 
5-times in diabetic women as age-matched  
controls.2 Even after correction for the presence of  
other risk factors including obesity, hyperlipidaemia, 
hypertension, and coronary artery disease (CAD), 
diabetic patients remain at an increased risk of 
developing heart failure.2,5,6 Diabetic heart disease 
(DHD) is defined as myocardial dysfunction 
(MD) that occurs independently of CAD and  
hypertension. This dysfunction may be subclinical  
but patients are at high risk of developing clinical  
heart failure.5 Furthermore, patients have a higher  
risk of developing heart failure secondary to  
traditional myocardial insults such as hypertension  

and CAD.7 MD in diabetics is a consequence of 
multiple pathological processes, including altered  
metabolism, interstitial fibrosis, endothelial 
dysfunction (ED), autonomic dysfunction (AD), 
microvascular disease (MVD), and coronary 
atherosclerosis (AS). This review will outline how 
multimodality imaging can demonstrate each of 
these pathological processes, and their effects on 
myocardial diastolic and systolic function.

AETIOLOGY OF DHD

The metabolic disturbances that cause MD in DHD  
are not completely understood, but abnormal  
glucose supply, utilisation, and abnormalities 
of free fatty acid (FFA) metabolism contribute 
significantly.8 Glucose metabolism is disrupted via 
multiple pathways in diabetes, resulting in reduced 
myocardial contractile function.9 Hyperglycaemia 
and insulin resistance also increase myocardial 
oxidative stress.10 Circulating FFA levels are 
elevated in diabetes and obesity, due to increased 
nutritional fatty acid intake and lipolysis.11 This leads 
to increased uptake and β-oxidation in the heart.11-13  
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In a process called myocardial steatosis (MS),  
excess fatty acids are stored as triglycerides (TGs)  
within myocytes. However, toxic intermediates, 
generated when FFA uptake by the cardiomyocytes 
exceeds its oxidative capacity, disrupt normal 
cellular signalling, and alter myocyte structure 
and function.11-14 The increased FFA oxidation also 
produces reactive oxygen species (ROS), impairing 
mitochondrial coupling and decreasing adenosine 
triphosphate (ATP) production. As such, diabetic 
patients develop impaired cardiac energetics, 
as reflected by reduced phosphocreatine/ATP 
ratio, independent of the duration of diabetes and 
coronary microvascular function.15,16 This process, 
known as lipotoxicity, eventually leads to cellular 
apoptosis and replacement fibrosis. 

Extracellular structural changes, such as interstitial 
fibrosis, also occur in the diabetic heart.17,18 These 
fibrotic changes are due to increased deposition  
of collagen and advanced glycation end-products, 
as well as cell necrosis.8,19,20 The increased 
interstitial fibrosis leads to extracellular matrix 
expansion and is associated with myocardial 
contractile and vasomotor dysfunctions,  
arrhythmias, and increased mortality.21 Angiotensin 
has emerged as a likely driver of myocardial cellular 
necrosis.22-24 Negative regulators of the renin-
angiotensin system have been shown to reduce 
cardiac hypertrophy, lipotoxicity, and inflammation 
in rat models of DHD, resulting in the reversal 
of diastolic dysfunction (DD).25 The metabolic 
abnormalities that characterise diabetes also lead 
to increased mitochondrial superoxide generation, 
reduced endothelial nitric oxide production, 
increased endothelin synthesis, and the production 
of prothrombotic factors.26,27 This disruption 
of vascular homeostasis causes endothelial  
dysfunction and MVD Additionally, these processes 
are the precursor for coronary AS,26 and together 
they impair myocardial function.

Altered Metabolism 

In a process synonymous with ‘fatty liver disease’, 
current evidence suggests altered FFA metabolism 
in the pathogenesis of DHD. It is generally accepted 
that intracellular TGs are probably inert but are 
reflective of increased intracellular concentrations  
of toxic fatty acid intermediates. Intramyocardial  
TGs can be quantified by hydrogen-1 magnetic 
resonance spectroscopy (1H-MRS) (Figure 1).28 A 
volume of interest triggered to both cardiac and 
respiratory motions is placed in the interventricular 
septum. A typical cardiac 1H-MRS spectrum  

displays signals arising from water, creatine,  
choline, and TG. Using dedicated curve fitting  
software, signal amplitudes from intracellular TGs  
and water can be quantified and expressed as  
TG/water ratio.

Studies have correlated intramyocardial TG levels 
with left ventricular (LV) function.28-33 van der Meer 
and co-workers32 demonstrated that intramyocardial 
TG content increases with ageing and is inversely 
correlated with the age-related decline in  
myocardial function. Similarly, diabetic and obese 
patients have significantly higher intramyocardial 
TG levels when compared to controls, and this is 
associated with MD.30,31,34 Animal models showing 
direct toxic effects of fatty acid intermediates 
on the myocardium provide further evidence 
for lipotoxicity.35,36 Importantly, studies have 
demonstrated that weight loss is associated with a 
concomitant reduction in intramyocardial TG levels 
and improvement in LV function.29,37 However, the 
effectiveness of pharmacological therapy for MS 
remains unclear, with studies showing conflicting 
results.33,38 Diabetic patients can also develop 
impaired cardiac energetics due to increased ROS 
production from increased FFA production.15,16 
This results in reduced phosphocreatine/ATP  
ratio compared to normal controls as quantified  
by phosphorus-31 MRS (31P-MRS).16 Similar to  
1H-MRS, pharmacological intervention studies to  
date failed to demonstrate changes in cardiac 
energetics by 31P -MRS despite improvements in 
cardiac function.33

Interstitial Fibrosis 

Histological studies of diabetic hearts without 
significant CAD demonstrated increased collagen 
deposition in the perivascular and interstitial 
regions.18,39,40 These structural changes lead to 
increased LV stiffness, impaired systolic and 
diastolic functions, and the development of clinical 
heart failure. Currently, both echocardiography 
and magnetic resonance imaging (MRI) can non-
invasively quantify the burden of interstitial fibrosis. 
Echocardiographic integrated backscatter analysis 
was the first imaging modality to non-invasively 
quantify the burden of myocardial fibrosis (Figure 
2, left panel). From the parasternal long-axis view, 
volumes of interest are placed in the anteroseptal 
and inferolateral walls at end-diastole, and the value 
of myocardial integrated backscatter is corrected 
for the pericardial integrated backscatter, thereby 
providing a calibrated backscatter value. Picano 
and co-workers41 demonstrated that there was  
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a linear correlation between calibrated integrated 
backscatter and the burden of fibrosis on  
histology. Other studies have demonstrated 
increased calibrated integrated backscatter in 
diabetic patients compared to controls.42,43

MRI can quantify the burden of interstitial fibrosis 
using T1 mapping sequences and gadolinium-
based contrast agents. Normally, gadolinium-based 
contrasts accumulate within myocardial fibrous 
tissues due to the absence of viable myocytes.44 
Iles and co-workers45 histologically validated 
and demonstrated an inverse linear relationship  
between global contrast-enhanced myocardial T1 
time and the burden of interstitial fibrosis (Figure 
2, right panel). Ng and co-workers46 were first to  

demonstrate that diabetic patients had significantly 
shorter global contrast-enhanced myocardial T1  
time compared to normal controls (p<0.001), 
suggesting an increased burden of interstitial  
fibrosis. Furthermore, there was an independent 
correlation between global contrast-enhanced 
myocardial T1 time and myocardial function.46

CARDIAC AD 

Diabetic AD is a well-known complication of  
diabetes. Its pathophysiology is likely to be 
multifactorial, involving metabolic alterations, 
neurohormonal growth factor deficiency, 
microvascular dysfunction, and autoimmune  
nerve damage.47 

Figure 1: Example of hydrogen-1 magnetic resonance spectroscopy acquisition from a patient. 
Panel A and B: short axis and 4-chamber view with the volume of interest placed in the interventricular 
septum; Panel C: unsuppressed spectrum showing the water peak; Panel D: water-suppressed spectrum 
showing peaks from choline, creatine, and triglyceride. Intramyocardial triglyceride (IMT) is quantified 
by summing the amplitudes of lipid resonances at 0.9 and 1.3 ppm, whilst water peaks at 4.7 ppm. IMT 
content relative to water is then calculated and expressed as a percentage based on: (signal amplitude of 
triglyceride)/(signal amplitude of water) x100.
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Cardiac autonomic neuropathy (CAN) is associated 
with increased risk of silent myocardial infarction  
(MI) and sudden cardiac death.48 Clinical 
manifestations of CAN include resting tachycardia, 
postural hypotension without an appropriate reflex 
increase in heart rate, and exercise intolerance  
due to blunting of cardiac output in response to 
exercise.49,50 Single photon emission computed 
tomography (SPECT) and positron emission 
tomography (PET) imaging are available for the 
assessment of cardiac sympathetic adrenergic 
innervation and activation.51-53

Currently, sympathetic innervation is  
most commonly assessed using 123-iodine 
metaiodobenzylguanidine (123I-MIBG), a 
norepinephrine analogue which is taken up and 
accumulated in the presynaptic nerve terminals.54-56 
Planar and SPECT images are acquired 10-20 
minutes (early) or 3-4 hours (late) after 123I-MIBG 
administration. From the planar images, semi-

quantitative measurements such as heart-to-
mediastinum (H/M) ratio and cardiac washout rate 
are used to evaluate global sympathetic innervation. 
SPECT images are used to assess regional 
abnormalities in sympathetic innervation. Previous 
studies demonstrated reduced 123I-MIBG uptake in 
diabetic patients,57 and the presence of CAN and 
reduced H/M ratio on delayed 123I-MIBG imaging 
were independently associated with increased all-
cause mortality.58 Unlike SPECT, PET allows absolute 
quantification of the myocardial sympathetic 
innervation. Previous study demonstrated that 
carbon-11 meta-hydroxyephedrine PET imaging 
can detect regional differences in sympathetic 
innervations in diabetic patients compared to 
healthy controls.52 In addition, patients with more 
severe autonomic neuropathy had significantly 
more extensive regional sympathetic denervation.52 
Importantly, defects in sympathetic innervation can 
regress or progress in diabetic subjects with good 
and poor glycaemic control respectively.59

Figure 2: Echocardiographic quantification of myocardial fibrosis.
Left panel: using calibrated integrated backscatter (IBS). From the parasternal long-axis view, the IBS of 
the myocardium is measured at the anteroseptal and inferolateral walls and corrected for the pericardial 
IBS value. Therefore, calibrated IBS is calculated as the average IBS of the anteroseptal and inferolateral 
myocardium minus the pericardium. A less negative value calibrated IBS value indicates more interstitial 
fibrosis. Right panel: magnetic resonance imaging example of myocardial fibrosis quantification by 
T1 mapping. Left ventricular endocardial and epicardial borders were outlined for all images (top right 
panel). The myocardial signal intensities (y-axis) were plotted against the inversion time (x-axis) (bottom 
right panel). Finally, the global contrast-enhanced myocardial T1 time is calculated by the software which 
performed curve-fitting of the data points to an exponential recovery curve (arrow) representing the 
recovery of myocardial longitudinal magnetisation. Therefore, a short global contrast-enhanced myocardial 
T1 time indicates a higher burden of interstitial fibrosis due to a greater concentration of gadolinium within 
the fibrous tissues, and vice versa. 
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MVD AND ED  

ED and MVD can be evaluated directly using 
various imaging techniques including flow-
mediated dilatation (FMD), myocardial contrast 
echocardiography, nuclear SPECT perfusion 
imaging, PET imaging, and MRI perfusion imaging. 
Endothelial function can be assessed non-invasively 
by FMD of the brachial artery (Figure 3, top panel). 
The brachial artery diameter is measured with 
ultrasound at baseline and at maximal vasodilation 
achieved during reactive hyperaemia. A blood 
pressure cuff is used to occlude the distal brachial 
artery and, when it is deflated, the increased flow 
causes endothelium-dependent dilatation. FMD is 
expressed as the percentage change relative to the 
baseline diameter. The related technique of low-
flow-mediated constriction can be used to assess 
vascular tone at rest.60 Impaired FMD in the brachial 
artery has been shown to correlate with coronary 
artery ED61 but clinical applications for FMD  
testing are still emerging.60,62 The technique has  
been used to demonstrate ED in patients at risk of 
AS before there is anatomical evidence of plaque 
formation.63 In diabetic patients without obstructive 
CAD, Djaberi and co-workers64 demonstrated 
that impaired FMD is associated with abnormal 
myocardial perfusion (MP). 

Myocardial contrast echocardiography can be used 
to detect microangiopathy by evaluating MP and 
blood flow.65,66 Microbubble contrast agents have 
similar rheology to red blood cells, so they stay  
within the intravascular compartment. These 
microbubbles resonate and appear bright on 
echocardiography when imaged using a low 
mechanical index, but are destroyed if a high 
mechanical index ultrasound pulse is transmitted. 
After a high mechanical index pulse is used to 
destroy microbubbles within the myocardium, 
the rate of replenishment is dependent upon the 
presence of intact microvasculature and myocardial 
blood flow rate. The intensity at which the contrast 
effects plateaus is dependent on myocardial blood 
volume. Therefore, areas with impaired perfusion 
appear dark and patchy. Moir and colleagues67 
used stress myocardial contrast echocardiography 
to demonstrate reduced myocardial blood flow  
reserve in diabetic patients in the absence of 
obstructive CAD.

MP imaging by thallium-201 or technetium-
99m sestamibi SPECT is a widely used and well 
validated tool for evaluating cardiac function and 

MP (Figure 3, bottom panel). MP defects with 
stress may be caused by obstructive epicardial 
CAD or ED of the coronary vasculature, leading 
to an insufficient vasomotor response and relative 
hypoperfusion.64,68 MP defects can be identified 
in 20-40% of asymptomatic diabetic patients.69,70 
Although prognostic for future cardiac events,70-72 
it may be reversible. The Detection of Ischemia in 
Asymptomatic Diabetics study69 demonstrated that 
inducible myocardial ischaemia in asymptomatic 
diabetic patients resolved with 3 years of medical 
treatment (including aspirin, statins, and angiotensin 
converting enzyme inhibitors) in almost 80% of 
patients. This is likely due to both improvements in 
ED and stabilisation of atherosclerotic plaques.

PET has superior sensitivity and specificity  
compared to SPECT for the assessment of MP 
to detect underlying CAD.73,74 It can also provide 
quantitative measures of myocardial blood flow 
and coronary flow reserve.75,76 PET has been used 
to demonstrate ED in diabetic patients without 
epicardial CAD.77-79 Despite these benefits, cardiac 
PET is still not widely used in clinical practice. MRI  
MP imaging employs a gadolinium-based contrast 
agent that can be detected on T1-weighted images 
as it travels through the cardiovascular (CV) system 
and into the myocardium. This allows quantification 
of MP at rest and during maximal hyperaemia  
induced by a pharmacological stressor. There is 
limited data on the use of MRI and MP imaging in 
diabetic patients. A small study found Type 1 diabetic  
patients with autonomic neuropathy had a 
significantly lower MP index than diabetic patients 
without autonomic neuropathy and controls.80

CORONARY AS   

Some authors consider the diagnosis of diabetes 
equivalent to pre-existing CAD in terms of 
predicting future CV events and prognosis.81,82 

Although the effects of CAD on myocardial function 
do not generally fall within the definition of DHD, 
they complicate its assessment. Diabetic patients 
have high rates of silent MI and asymptomatic 
myocardial ischaemia. Silent MI in diabetic patients 
was recognised >40 years ago in the Framingham 
Heart Study.83 More recently, evaluation of the UK 
Prospective Diabetes Study showed 326 of 1,967 
patients (16.6%) had electrocardiographic evidence 
of silent MI at baseline.58 Silent MI in diabetic  
patients is independently associated with an 
increased all-cause mortality. In an observational 
study of 1,899 asymptomatic diabetic patients 
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without prior CAD or MI, 60% had abnormal stress 
myocardial contrast echocardiography, and of  
these, 65% had CAD confirmed on angiography.84  In 
that study, the presence of two or more other CV 

risk factors did not result in more abnormal tests or 
a higher percentage of confirmed CAD; however, 
CAD was more diffuse and severe in patients with 
additional risk factors.

Figure 3: Assessment of flow mediated dilatation (top panel) and myocardial perfusion using gated single 
photon emission computed tomography at rest and after adenosine stress (bottom panel).
Top: the brachial artery diameter distal to the elbow is measured using ultrasonography (D1). Ischaemia is 
induced by inflating a distal blood pressure cuff to at least 200 mmHg for 5 minutes. After cuff deflation, 
the brachial artery diameter is measured every 30 seconds for 5 minutes and the widest diameter recorded 
is considered the maximal vasodilation achieved during reactive hyperaemia (D2). Bottom: resting images 
and stress images in the short axis, horizontal, and vertical long axes are depicted. In the current example, 
no persistent perfusion defects were observed. Reversible perfusion defects were observed in the inferior, 
inferoseptal, anterior, and anteroseptal regions (arrows). 
Permission obtained from Ng et al.108 
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Traditionally, invasive coronary angiography 
(and its complementary imaging techniques, 
including intravascular ultrasound, virtual histology 
intravascular ultrasound, and optical coherence 
tomography) allowed direct visualisation of  
coronary AS. However, increasing availability and 
improved quality of cardiac computed tomography 
(CT) has led to widespread adoption of this  
technique to evaluate coronary AS. Coronary artery 
calcium (CAC) scoring detects calcium present  
within atherosclerotic plaques. As a marker of AS, 
CAC scores predict cardiac event risks in both  
diabetic and non-diabetic patients.85 Anand and 
co-workers86 have demonstrated that in diabetic 
patients, CAC scores of <10 were associated 
with very low clinical cardiac event rates and no 
perfusion abnormalities on MP imaging. CAC score 
is superior to established CV risk factor models for 
predicting silent myocardial ischaemia and short-
term outcomes.

Cardiac CT angiography (CCTA) can provide 
detailed information on coronary artery anatomy, 
and assess both coronary artery atheroma and 
luminal stenosis (Figure 4). Advances in cardiac 
CT scanners have led to significant improvements  
in the accuracy of CCTA for the detection of 
coronary artery stenosis. The technique is now  

highly sensitive in detecting AS and has a 
negative predictive value that approaches 100%.  
Furthermore, CCTA allows detection of early 
non-obstructive atherosclerotic plaques without  
calcium. Compared to non-diabetic patients, 
CCTA has shown that diabetic patients have 
higher coronary artery atheroma burden and more 
extensive coronary artery stenoses.87,88 All types 
of plaques (soft, calcified, and mixed) were more 
common in diabetic patients independent of other 
CV risk factors.

MD, DD, AND SD   

Whether DHD is clinically evident or not, reliable 
and consistent methods of demonstrating LV DD  
and systolic dysfunction (SD) are needed to  
diagnose and assess progression of the disease. 
Echocardiographic techniques, including tissue 
Doppler imaging (TDI) and speckle tracking strain/
strain rate, remain most useful for this purpose. 
Similarly, MRI tagging also permits quantification 
of myocardial strain/strain rate. However, due to 
the need for complicated image post-processing 
compared to the ease of echocardiographic speckle 
tracking strain/strain rate, it has failed to gain 
significant traction clinically and in research.

Figure 4: Evaluation of coronary artery disease with cardiac computed tomography angiography in 
diabetic patients.
A) Curved multiplanar reformation (cMPR) of a left anterior descending artery with no evidence of 
atherosclerosis. B) cMPR of the left anterior descending artery in a diabetic patient with both calcified and 
soft plaque in the proximal portion of the vessel.
LAD: left anterior descending artery.

BA
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On echocardiography, transmitral inflow patterns 
and TDI of the peak early diastolic early velocities  
are used to categorise diastolic function.89 
Interpretation of the transmitral inflow pattern in 
isolation is limited by its load and age dependency 
and may be impossible in cases of mitral valve 
disease. TDI myocardial velocities may be influenced 
by passive translational motion and tethering effects 
from surrounding myocardial tissue. Myocardial 
strain and strain rate imaging (obtained using TDI 
or speckle tracking) overcome these limitations 
by providing site-specific quantification of active 
myocardial deformation.90-92 Speckle tracking strain 
is also angle independent. Wang and colleagues93 
have demonstrated in animal models that global 
strain rate during the isovolumic relaxation 
time strongly correlates with LV relaxation. The  
prevalence of DD amongst diabetic patients 
depends not only on the population studied, but  
also the sensitivity of the imaging modality 
employed. Amongst 86 young normotensive 
diabetics with adequate blood glucose control and 
no clinically detectable ischaemic heart disease, 
the prevalence of DD was 47% based on transmitral 
filling pattern alone94 but rose to 75% when TDI 
was also employed.95 Other groups have reported 
lower incidence, even when using all available echo 
parameters.96,97 The incremental value of using strain 
and strain rate imaging in the assessment of DD 
remains unclear.90

DHD also affects systolic function. This is  
particularly evident when sensitive markers of  
systolic function are used for assessment. Left 
ventricular ejection fraction (LVEF) has traditionally 
been the clinical standard of assessing global LV 
systolic function. However, tissue velocity, strain,  
and strain rate imaging may be used as more 

sensitive methods of detecting LV SD. Tissue 
velocity measurements have been shown to 
correlate with radionuclide ventriculography in the 
assessment of global LV function.98 Strain and strain 
rate have also been shown to correlate with LVEF 
by 2D echocardiogram99 and invasive measures of 
LV contractility.100 The sensitivity of tissue velocity,  
strain, and strain rate imaging makes them useful 
tools in the assessment of subclinical MD90-92 and 
they have been used extensively for this purpose 
in DHD.43,101-103 It has been demonstrated that 
strain and strain rate are significantly reduced in 
diabetic patients with normal LVEF who have no LV 
hypertrophy or CAD.43 Strain and strain rate imaging 
are also particularly useful to compare within 
the same individual when assessing response to 
treatment.104,105 The site specificity of strain imaging 
has also allowed regional differences in diabetic 
MD to be demonstrated, with longitudinal function 
being impaired early in DHD whilst there is relative 
preservation of radial function.101-103,106 These regional 
variations may account for the initial preservation 
of LVEF in DHD. Structure and function of the right 
ventricle may also be affected by DHD. In diabetic 
patients with satisfactory blood glucose control 
and without ischaemic heart disease, cardiac MRI 
has demonstrated right ventricular remodelling 
and significant impairment of diastolic and systolic 
function compared to controls.107 

CONCLUSION    

DHD is a significant cause of increased morbidity 
and mortality. Our understanding of the underlying 
pathological processes is steadily growing, 
particularly through the use of multimodality 
imaging. Multimodality imaging can be used to 
define and assess both DD and SD in DHD.
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