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ABSTRACT

Pancreatic beta and neuronal cells share numerous similarities, including a key transcriptional mechanism  
of the differentiation programme. The mechanism involves the decrease or the extinction of the  
transcriptional repressor RE-1-silencing transcription factor (REST), also called neuron-restrictive silencer 
factor (NRSF), which leads to the expression of various genes encoding proteins required for mature beta  
and neuronal cell function. Abnormal expression and genetic variation in some of the REST/NRSF target 
genes have been reported in diabetes and neurodegenerative disorders, suggesting that common  
pathogenic mechanisms account for beta-cell decline and neuronal degeneration in the two diseases. 
In addition, some of the REST/NRSF target genes have been identified as potential therapeutic 
targets for improvement of beta-cell function in diabetes. This review sheds light on the neuronal and 
beta-cell REST/NRSF target genes that are potential future drug targets for the treatment of diabetes  
and neurodegeneration.
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INTRODUCTION

The link between diabetes mellitus and some forms 
of dementia, such as Alzheimer’s disease (AD), has 
become irrefutable. Patients with Type 2 diabetes 
are more predisposed to the development of AD 
than individuals without diabetes.1,2 Conversely, 
AD patients have a higher chance of developing  
diabetes than the elderly without dementia.3 AD 
and diabetes are characterised by perturbed 
glucose metabolism in the brain and pancreas and  
increased cell death,3 leading to neuronal and 
pancreatic islet beta-cell dysfunction. These similar 
pathological features are supported by a large 
number of similarities between neuronal and beta 
cells. Indeed, despite a disparate embryonic origin, 
these two cell types are equipped with similar 
machineries involved in the secretory function 
and the control of apoptosis.4-7 These similar tasks 
are thought to occur during differentiation via 

a transcriptional mechanism involving the RE-1-
silencing transcription factor (REST) transcriptional 
repressor, otherwise known as neuron-restrictive 
silencer factor (NRSF). While REST/NRSF is widely 
expressed elsewhere in the body, the expression 
of REST/NRSF is extinguished in mature beta 
cells.4,6 Thus, the absence of REST/NRSF allows 
the expression of numerous genes playing a role 
in survival, metabolic, and secretory pathways of 
mature beta cells.4,6,8 Abundant expression of REST/
NRSF target genes is also found in neuronal cells, 
although, unlike in beta cells, the expression of  
REST/NRSF is detectable.9 The present review 
provides insights into the role of REST/NRSF target 
genes in the regulation of survival, metabolic, and 
secretory pathways in beta and neuronal cells,  
as well as their contribution to neurological and 
metabolic disorders. 
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RE-1-SILENCING TRANSCRIPTION 
FACTOR/NEURON-RESTRICTIVE 
SILENCER FACTOR 

REST/NRSF is a Gli-Krüppel-like zinc finger 
transcription factor.10 Although the expression  
level of REST/NRSF is highly variable, it is widely  
expressed in most tissues of adult mice. In adult  
rats and mice, the lowest level of REST/NRSF  
mRNA is detected in the central nervous system 
(CNS) and pancreas, whereas the highest  
expression of the factor is found in tissues  
including the thymus, placenta, uterus, and 
oocytes.4,10-12 REST/NRSF prevents or attenuates the 
transcription of its target genes. This is achieved 
by binding to a 21-bp RE-1 binding site/neuron-
restrictive silencer element (NRSE) that is present 
in the regulatory regions.10 The NRSE sequence, 
localisation, and orientation vary within target 
genes.13 These differences may modulate promoter 
activity even if, in any case, repression is achieved.13,14 

REST/NRSF represses the expression of its targets 
via a mechanism involving chromatin modification 
and promoter methylation.15-18 REST/NRSF target 
genes have been identified, with the first set of 
target genes found by comparing the putative 
sequence targets from the GenBank database with  
a composite NRSE derived from a few identified  
REST/NRSF targets.19 The study led to the 
identification of 22 targets,19 although this list of 
targets has subsequently been extended. The 
combination of in silico searches with biochemical 
studies has led to the identification of 892 and 944 
bona fide human and mouse NRSEs, respectively, 
among the thousands of putative targets found 
within each whole genome.20 A comparative  
analysis of the NRSEs between species using a 
profile-based approach has refined the number 
of NRSE sites.12 Thus, 895 NRSE sites conserved 
in human, mouse, rat, and dog (with an estimated 
false-positive rate of 3.4%) have been identified.12 
Other independent studies have used biochemical 
approaches to confirm the regulation of these 
targets by REST/NRSF.21 

The regulation of NRSE-containing genes by REST/
NRSF further varies within different cell types.  
REST/NRSF is expressed in human embryonic 
stem cells (ESCs) and ESC-derived neurons.22 
Genome-wide data mining from ChIP-Seq datasets 
have identified 2,172 REST/NRSF targets in human 
ESCs, whereas 308 targets are found in ESC-
derived neurons.22 These data suggest that the 

binding of REST/NRSF to the NRSE relies on cell-
dependent transcriptional cofactors and genomic 
and/or epigenomic context. Conversely, the precise 
number of REST/NRSF target genes expressed by 
cells in which REST/NRSF is absent or inactive (e.g. 
the pancreas and CNS) is unknown. This limitation 
results from the inadequacy of the technique 
used to immunoprecipitate REST/NRSF for ChIP-
Seq analysis while the endogenous REST/NRSF is 
absent or almost undetectable. Nevertheless, the 
bioinformatics and biochemical analyses indicate 
that numerous targets are present in neuronal and 
beta cells, in which most of them share similar  
roles. The content below describes some of the 
targets and their implications in neuronal and  
beta cells. 

REST/NRSF TARGET GENES ARE 
INVOLVED IN NEURONAL AND 
BETA-CELL DIFFERENTIATION

Evidence of a role for REST/NRSF target genes in 
neuronal cell differentiation comes from in vitro  
and in vivo studies in which the expression of 
REST/NRSF has been manipulated. REST/NRSF is  
expressed in neural stem cells (NSCs),23 with the 
expression of the repressor required for repressing 
neuronal targets and for maintaining NSCs in an 
undifferentiated state.23 Activation of REST/NRSF 
target genes via the introduction of dominant- 
positive REST/NRSF into NSCs is sufficient to  
promote neuronal differentiation. Conversely, 
abnormally elevated expression of REST/NRSF in  
NSCs may contribute to cerebellum-specific  
tumours by blocking neuronal differentiation.23 
Inactivation of REST/NRSF may reactivate  
differentiation and block the tumourigenic 
potential.23 REST/NRSF expression is also 
abnormally elevated in medulloblastoma cells.24  
Countering the function of REST/NRSF  
de-represses the expression of neuronal genes and 
triggers apoptosis of the tumour cells.24 REST/ 
NRSF is highly expressed in ESCs,25,26 with a  
decrease in the level of REST/NRSF coinciding 
with the differentiation of these cells into mature 
neurons.25,26 Mutant animals with a conditional and 
CNS-specific knockout of REST/NRSF display an 
increase in neurogenesis.27,28 However, abnormal 
activation of REST/NRSF target genes outside 
neuronal cells perturbs embryo development and 
leads to early embryonic lethality.29,30 Suppression 
of REST/NRSF expression by genetic disruption of 
the gene in mice leads to forebrain malformation, 
disorganisation of the midbrain, and a widespread 
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apoptosis, which ultimately leads to death at 
embryonic day 11.5 (E11.5).29,30 Some key REST/NRSF 

targets involved in neuronal development have  
been identified and are listed in Table 1.

Table 1: REST/NRSF target genes that control neuronal and islet cell differentiation. 

Gene name Beta cells and endocrine cells Neurons References

Role Targets Role Targets

Ascl1 Endocrine differentiation Neurogenin 3 Neurogenesis Dlx2, Sox4, 
Ebf3, Gli3, Nf1b, 
NeuroD4, Ap3b2, 
Mcf2l, Nrxn3

12, 60, 61

DLX6 ND ND Differentiation 
of interneuron 
progenitors

Wnt5a 12, 62

HNF4a Beta-cell replication Ras/ERK 
signalling

Neural stem cell 
differentiation

Rho-GDP 
dissociation 
inhibitors

12, 63, 64

LMX1A Beta-cell differentiation Insulin Dopamine-cell 
differentiation

12, 65, 66

miR9 Beta-cell terminal 
differentiation
– differentiation of 
mesenchymal stem cells 
into beta cells

Onecut2 Neuronal fate TLX, Foxg1, Gsh2, 
SIRT1

12, 65, 67, 68

miR124 Early pancreas 
development and beta-cell 
terminal differentiation

Foxa2 Neuronal fate PTBP1, Sox9, 
SCP1, Ephrin-B1, 
JAG1, BAF53a, 
SP1

12, 65, 69, 70

NeuroD1 Endocrine differentiation 
and maintenance of 
differentiated phenotype of 
mature islet cells

PDX1, Pax4, Pax6, 
Nkx2.2, Nkx6.1, 
Hlbx9, insulin

Central nervous 
system and 
sensory 
nervous system 
development

Brn3d, IP3R, Ebf3 12, 65, 71, 72

NeuroD2 Endocrine lineage genes Pax4, IAPP, 
glucokinase, 
somatostatin, 
tweety1

Neuronal 
differentiation

Zfhx1a 12, 73, 74

NeuroD4 ND ND Neuronal 
differentiation in 
the hindbrain

NOTCH ligands 
Dll1 and Dll3

12, 75

Neurogenin3 Endocrine lineage 
specification

NeuroD1, 
NeuroD2, 
NeuroD4

Differentiation of 
NPY, POMC, NPY, 
TH neurons

NeuroD1, Nhlh2 65, 76, 77

Onecut1 Early endocrine 
development

PDX-1, Onecut3 Retina 
development

Lim1, Prox1 12, 78, 79

Pax2 Size and number of islets Glucagon Mid and hindbrain 
development

Brn1, En2, Sef, 
Tapp1, Ncrms

12, 80, 81

Pax4 Endocrine lineage beta and 
delta-cell specification

Insulin, Glut2, 
Mafa

Retinal 
photoreceptor 
development

ND 12, 82, 83

Sox2 Pluripotent pancreatic stem 
cells

Oct-3/4, Nanog, 
FGF-4

Neurogenesis Jag1, Gli3, Mycn 12, 84, 85

ND: not determined; REST: RE-1-silencing transcription factor; NRSF: neuron-restrictive silencer factor.
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Similarly to neurons, REST/NRSF is present in 
pancreatic progenitors but is expressed at a very 
low level in the mature pancreas.12,31-33 However, 
the repressor is not detectable in various insulin-
producing cell lines,4,6,34 suggesting that a decrease  
of REST/NRSF expression is required for endocrine 
cell differentiation.32 Several data support this 
hypothesis: firstly, suppression of REST/NRSF 
in mesenchymal stem cells contributes to the  
expression of beta-cell differentiation markers, 
including Neurogenin3 and NeuroD1, and 
programming into insulin-secreting cells;35 secondly, 
forced expression of the repressor in progenitor 
cells reduces the number of endocrine-committed 
progenitors by E14.5 and ultimately diminishes the 
numbers of glucagon-positive and insulin-positive 
cells in E18.5 pancreas.32 This finding is in line with 
a report showing a Polycomb-mediated repressive 
methylation mark within the gene coding for REST/
NRSF, which coincides with the activation of a core 
beta-cell de-repression programme.33 The impact  
of REST/NRSF targets in beta cells has been 
further unveiled by beta-cell-specific overexpression 
of REST/NRSF in mice.8 These transgenic 
mice display reduced plasma insulin levels and  
develop glucose intolerance.8 Diminution of insulin  
production is associated with a reduced number of 
beta cells,8 with the decrease in insulin expression 
and beta cells possibly resulting from impaired 
beta-cell differentiation.8 Some pieces of evidence 
may confirm this hypothesis. Numerous REST/
NRSF targets, transcription factors, and microRNAs 
are involved in beta-cell differentiation (Table 1).  
Interestingly, these genes are also involved  
in neuronal cell development and indicate  
that neurons and beta cells share a similar  
developmental programme.

REST/NRSF TARGET GENES ARE 
INVOLVED IN NEURONAL AND BETA- 
CELL SECRETORY FUNCTION

The very low expression and absence of REST/ 
NRSF in mature neuronal and beta cells,  
respectively, underlines a role for the target genes  
in the specialised secretory function of these two  
cell types. One of the earliest identified REST/
NRSF target genes was the regulator of synaptic 
transmission synapsin I.36-38 In neurons, synapsin 
I is localised to the surface of small synaptic 
vesicles.39 Synapsin I interacts with Rab3a and 
the cytoskeleton, and thereby tethers vesicles 
in a storage pool away from presynaptic release 

sites.40 Besides small synaptic vesicles, neuronal 
cells have dense-core vesicles (DCVs) filled with 
neuropeptides, neurotrophic factors, and other 
modulatory substances.41 The DCVs secrete their 
contents from synaptic and extrasynaptic regions 
of axons and dendrites in response to calcium 
influx. Secretion by DCVs requires the soluble 
N-ethylmaleimide-sensitive-factor attachment 
protein receptor (SNARE) proteins, including the 
t-SNAREs, synaptosomal-associated protein 25 
(SNAP25), syntaxin 1a, and the v-SNARE vesicle-
associated membrane protein 2 (VAMP2).41  
SNAP25 and syntaxin 1a are REST/NRSF target 
genes.12 In PC12 cells and astrocytes in which  
REST/NRSF is highly expressed, the expression of 
SNAP25 and syntaxin 1 is almost undetectable.42 
Inactivation of REST/NRSF de-represses the 
expression of the two secretory machinery proteins 
and allows regulated DCV exocytosis.42 Some of 
the REST/NRSF target genes controlling neuronal 
secretion are listed in Table 2. Many of these genes 
play a crucial role in the regulation of glucose-
induced insulin secretion. Downregulation of their 
expression by overexpression of REST/NRSF in  
beta cells hampers insulin secretion.8,34 

REST/NRSF TARGET GENES ARE 
INVOLVED IN SURVIVAL AND 
DEATH OF NEURONAL AND 
PANCREATIC BETA CELLS

There is growing evidence indicating that REST/
NRSF confers either protection or death in  
neuronal and beta cells. The expression of REST/
NRSF is detectable in the rat hippocampal CA1 
pyramidal neurons,43 and the level of expression 
increases and promotes apoptosis in response to 
ischaemia insults.43 REST/NRSF is also expressed 
in the neurons of the prefrontal cortex,9 but, unlike 
hippocampal CA1 neurons, the expression of 
the repressor is protective against pro-apoptotic  
stimuli, stress, and neurodegenerative disorders 
such as AD.9 The level of REST/NRSF expression 
increases during normal ageing,9 with the rise in 
REST/NRSF expression associated with a reduction 
in expression of many pro-apoptotic targets.9 
However, the expression of REST/NRSF decreases 
in the prefrontal cortex of AD patients compared 
with healthy and age-matched individuals.9  

The neuronal destruction in AD has been  
associated with an increase in the pro-apoptotic  
targets9 (Table 3), which underlines a role for 
REST/NRSF in the molecular pathogenesis of AD.9  
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Table 2: REST/NRSF target genes that control neuronal and beta-cell secretion. 

ND: not determined; REST: RE-1-silencing transcription factor; NRSF: neuron-restrictive silencer factor.

Gene name Beta cells Neurons References

Role Role

Cplx 1 and 2 Docking and regulation of vesicles/
membrane fusion

Docking and regulation of vesicles/
membrane fusion

8, 86

Cx36 Gap junction in lipid raft domains of beta- 
cell membrane, exchange of cationic 
molecules, gene expression

Electrical activity 87, 88

GRIN1 Inhibits glucose-induced insulin secretion Adrenaline and dopamine release 12, 59, 89

MAPK8IP1 Regulation of the glucose transporter 
Glut2 expression

Regulation of the motor cargo and 
vesicles transport

6, 9

miR9 Regulates granuphilin and insulin 
exocytosis 

Regulates vesicle transport by MAP1B, BK 67, 90

miR29a, 
miR29b

Regulates expression of MCT1 and 
Onecut2

Regulates expression of MCT1 and 
Onecut2

12, 67

Onecut2 Regulates granuphilin gene expression ND 90

Snap25 Fusion of insulin-containing vesicles Fusion of clear and dense-core vesicles 8, 12, 42

Syt2 Binds calcium and regulates glucose-
stimulated insulin secretion in a cell line

Calcium sensor for rapid neurotransmitter 
release

12, 91

Syt4 Regulates glucose-induced insulin 
secretion

Regulates calcium-dependent exocytosis 12, 91

Syt6 ND Fusion of synaptic vesicles 12, 92

Syt7 Binds calcium and regulates glucose-
stimulated insulin secretion

Calcium sensor for rapid neurotransmitter 
release

12, 91

Syt14 ND ND 12

Syn1 Not required for glucose-induced insulin 
secretion in islets

Neurotransmitter release 12, 93

Syn3 ND Neurotransmitter release 12, 94

Table 3: REST/NRSF target genes that control neuronal and beta-cell apoptosis rate. 

ND: not determined; REST: RE-1-silencing transcription factor; NRSF: neuron-restrictive silencer factor.

Gene name Beta cells Neurons References

Role Role

BAX Apoptosis Apoptosis 9, 12, 95

BBC3 Apoptosis Apoptosis 9, 12, 96

BID Apoptosis Apoptosis 9, 12, 97

Cx36 Survival Apoptosis 87, 88

FADD Apoptosis Apoptosis 9, 98

FAS Apoptosis Apoptosis 9, 99

MAPK8IP1 Survival Survival/Apoptosis 9, 100

MAPK10 Survival Apoptosis 52, 56, 101

MAPK11 Survival Apoptosis 9, 102

MAPK12 ND Apoptosis 9

miR-29a Apoptosis Survival 12, 103

TRADD Apoptosis Apoptosis 9, 98
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Therefore, within different brain regions and  
neuronal subtypes, REST/NRSF is capable of 
triggering opposite cellular outcomes upon  
exposure to stressful stimuli. This observation  
suggests that REST/NRSF target genes are  
differentially expressed within neuronal subtypes 
via a mechanism that is independent of REST/
NRSF. A lack of balance between the levels of 
pro-apoptotic and pro-survival REST/NRSF target 
genes may account for either the protection or 
apoptosis of neurons. Another mechanism through 
which REST/NRSF may direct cell outcome is 
dependent on its subcellular localisation: although 
REST/NRSF is a nuclear transcription factor, the 
repressor is found in the cytosol of striatal and 
cortical neurons.44 The cytosolic localisation of 
REST/NRSF relies on huntingtin, which interacts 
with and thereby sequesters the repressor within 
the cytosol.44 In Huntington’s disease (HD), mutant 
huntingtin dissociates from REST/NRSF and  
leads to the repressor’s nuclear translocation and  
neuronal dysfunction via a decrease in the 
transcription of brain-derived neurotrophic factor.44 

In pancreatic beta cells, the absence of REST/
NRSF is required for survival:45 the decrease in 
the number of beta cells caused by increased 
apoptosis in transgenic mice with beta-cell-specific 
overexpression of REST/NRSF argues in favour 
of this statement.45 The expression of targets  
involved in the survival of beta cells is greatly  
reduced within the islets of the mutant animals, 
suggesting that the majority of REST/NRSF targets 
expressed in beta cells are required for beta-cell 
survival. These targets include the gap junction 
protein connexin 36 and some components of the 
mitogen-activated protein kinase pathways, such  
as MAPK8IP1 (islet brain 1), MAPK10 (JNK3), and 
MAPK11 (p38a) (Table 3); it is noteworthy that 
these same targets have been described as leading 
to apoptosis in neuronal cells. This underlines  
a possible divergence in the mechanisms  
orchestrating the survival and apoptosis signals in 
neuronal and beta cells. 

CONCLUSION AND PERSPECTIVE

The identification of REST/NRSF target genes has 
unveiled the striking similarities between neuronal 
and islet beta cells in numerous processes, including 
development and cellular function. These targets 
can therefore be considered as common markers 
for neuronal and beta-cell differentiation from stem 
cells. Some of the targets are also instrumental in 

regulating key apoptotic and survival signalling 
pathways in neuronal and beta cells. These genes 
can contribute to neuronal and beta-cell death in  
AD and diabetes. The pathogenesis of the two 
diseases is multifactorial and includes a genetic 
component. The REST/NRSF target genes are 
candidates for mutations associated with the 
development of diabetes and AD, as illustrated by 
MAPK8IP1. Some individuals who are carriers of a 
loss-of-function mutation found within the coding 
region of MAPK8IP1 develop a rare and monogenic 
form of diabetes.46 Conversely, a gain-of-function 
mutation within the promoter region of the same 
gene has been associated with AD.47 

Accumulation of MAPK8IP1 has been found within 
beta-amyloid deposits in degenerated neurons,48 
suggesting a role for this protein and other REST/
NRSF targets in neuronal degeneration caused 
by amyloid deposits. The increase in MAPK8IP1  
content within the neurons of AD patients may be  
the consequence of an increased mRNA level  
caused by a reduction in REST/NRSF expression.9 
The restoration of REST/NRSF expression or 
the blocking of its key apoptotic target genes 
may be a therapeutic target for combating  
neurodegeneration in AD. Similar to neurons 
in AD, pancreatic islets of diabetic patients are 
characterised by deposition of amyloid aggregates, 
which may contribute to islet beta-cell decline and 
therefore aggravation of diabetes over time.48,49 
In both diabetes and AD, amyloid deposits result 
from complexes of amyloid oligomers that include 
beta amyloids.48,50 Some REST/NRSF targets may 
account for the formation of beta amyloid and 
deposits. These targets include MAPK8IP1, MAPK10, 
and the γ-secretase component presenilin 1.12,48,50-52 
In beta cells, amyloid aggregation can be blocked 
by the glucagon-like peptide 1 receptor agonist 
exenatide.53 The use of GLP-1 mimetics has been 
shown to protect beta cells against apoptosis 
induced by a large number of stimuli, including 
cytokines.54,55 The mechanism through which these 
GLP-1 mimetics achieve cytoprotective effects 
in beta-cells implicates the anti-apoptotic REST/
NRSF target genes MAPK8IP1 and MAPK10.54,56 
It is possible that the effect of GLP-1 mimetics on 
amyloid aggregation relies on these two REST/ 
NRSF targets and therapeutic strategies able to 
promote the expression of both targets may be 
valuable for improving functional beta-cell viability 
in diabetes.

There are some diseases, however, in which the 
decline of cells is associated with an increase in 
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