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ABSTRACT

Definitive radiation therapy is a well-recognised curative treatment option for localised prostate cancer. A 
suitable technique, dose, target volume, and the option of a combination with androgen deprivation therapy 
needs to be considered. An optimal standard external beam radiotherapy includes currently the intensity-
modulated and image-guided radiotherapy techniques with total doses of ≥76-78 Gy in conventional 
fractionation. Data from several randomised studies increasingly support the rationale for hypofractionated 
radiotherapy. A simultaneous integrated boost with dose escalation focused on a computed tomography/
positron emission tomography or magnetic resonance imaging/magnetic resonance spectroscopy detected 
malignant lesion is an option to increase tumour control with potentially no additional toxicity. The application 
of a spacer is a promising concept for optimal protection of the rectal wall.

Keywords: Prostate cancer, positron emission tomography, magnetic resonance imaging, external-beam 
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INTRODUCTION

Standard curative treatment options for localised 
prostate cancer (PrC) are radical prostectomy 
(RP) or definitive radiation therapy. Equivalent  
biochemical recurrence rates have been frequently 
reported in the past.1 Patients undergoing RP 
are more likely to have urinary incontinence and  
erectile dysfunction, while patients undergoing 
radiotherapy are more likely to have bowel  
problems.2,3 Treatment decision is usually based 
on specific risk groups4 (Table 1, including the 
author’s suggestion for a radiotherapy treatment 
concept). Very low/low-risk patients and very 
high/high-risk patients are combined in low and 
high-risk groups, respectively, in most studies. A 
very low-risk group defines a group particularly 
well suited to active surveillance.  The decision 
for a radiotherapy dose and target concept, and 
the decision for additional androgen deprivation 
therapy (ADT), are based on individual risk 
factors. Modern radiotherapy concepts result in  
favourable and improved results in comparison to 
older concepts,5 even for high-risk patients, with  

10-year prostate-specific survival rates of about 95% 
applying doses ≥75.6 Gy.6,7 

RADIOTHERAPY TECHNIQUES

This review focuses on external beam radiotherapy 
(EBRT) for PrC, commonly administered as 
fractionated linear accelerator photon treatment. 
Conventional fractions are generally used, with 1.8- 
2.0 Gy daily fractions up to a total dose of 74-80 
Gy. EBRT is based on a single treatment planning 
computed tomography (CT) with a specific prostate 
position, predominantly dependent on rectum 
volume (three-dimensional conformal radiotherapy 
[3D-RT]).8 As a result of daily positioning 
uncertainties, inter and intrafraction prostate 
motion, safety margins need to be added around  
the prostate in the treatment planning process. 
Prostate (+/- seminal vesicles; +/- pelvic nodes) is 
defined as clinical target volume (CTV) with safety 
margins as planning target volume (PTV). 

Image-guided radiotherapy (IGRT) techniques are 
a prerequisite for a precise prostate localisation 
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for every EBRT fraction and reduction of safety  
margins. Biochemical tumour control has been 
shown to be significantly lower for patients with 
larger rectum volumes in the treatment planning 
CT scans even if a posterior safety margin of 1 cm 
is considered without IGRT techniques.9 Cone 
beam CT, ultrasound localisation with dedicated  
ultrasound imaging system, fiducial markers 
(intraprostatic gold markers, fiducial catheters) in 
combination with MV/kV portal imaging are used  
to correct patient set-up.10,11 Higher technology 
fiducials include electromagnetic transponders, 
which transmit radiofrequency waves and 
require special localisation and tracking systems 
that track prostate motion during an EBRT  
fraction.12 According to an evaluation of inter  
and intrafraction prostate displacements, safety  
margins of 9 mm/15 mm/10 mm versus 4 mm/4 
mm/4 mm are required in the superior-inferior/
anterior-posterior/lateral directions without versus 
with daily image guidance to assure treatment of 
PrC with an adequate precision.13

Intensity-modulated radiotherapy (IMRT) is an 
advanced 3D-RT technique, often regarded as 
the current standard technique for primary PrC 
EBRT, improving dose conformity and reducing  
the dose to organs at risk in comparison to  
conventional 3D-RT.5 A multileaf collimator is 
required for IMRT. Leafs are either on constant 
positions (step-and-shoot IMRT) or they are 
moving during irradiation (dynamic IMRT). Terms 
such as VMAT (volumetric modulated arc therapy) 
or Rapid Arc are used for specific dynamic 
IMRT technologies with simultaneous rotation 
of the gantry and leafs, allowing the delivery of a  
treatment fraction within 1-2 minutes. Tomo 
Therapy, Vero, or CyberKnife are specific 
linear accelerator technologies. A CyberKnife 
(linear accelerator mounted on a robotic arm) is  
exclusively used for hypofractionated (high dose  
per fraction) or single dose (also known as 
radiosurgery) treatments. 

Table 1: Prostate cancer recurrence risk definitions and corresponding radiotherapy concept.

Risk Group Risk group definition External beam radiotherapy concept

Very low risk

Stage T1c
Gleason score ≤6
PSA <10 ng/ml

fewer than 3 prostate biopsy 
cores positive, ≤50% cancer in 

each core
PSA density <0.15 ng/ml/g

dose ≥72-74 Gy

target volume prostate +/- base of semi-
nal vesicles

Low risk
Stage T1-T2a 

Gleason score ≤6
PSA <10 ng/ml ADT no indication

Intermediate risk
Stage T2b-T2c or

Gleason score 7 or
PSA 10-20 ng/ml*

dose ≥76-78 Gy

target volume prostate + (base of) semi-
nal vesicles

ADT +/- neoadjuvant/adjuvant 
ADT for 4-6 monts

High risk
Stage T3a or

Gleason score 8-10 or
PSA >20 ng/ml

dose ≥76-78 Gy

target volume

prostate + (base of) semi-
nal vesicles, risk adapted 
treatment of pelvic lmph 

nodesVery high risk (locally  
advanced) Stage T3b-T4

ADT + 2-3 years adjuvant ADT

*Patients with multiple adverse factors may be shifted into the next higher risk group.
PSA: prostate-specific antigen; ADT: androgen deprivation therapy.
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DOSE ESCALATION

Several randomised EBRT dose escalation studies 
have been performed in the last few decades, 
demonstrating a biochemical and clinical recurrence 
free survival benefit for total doses of 74-78 Gy 
in comparison to doses of 64-70 Gy.14,15 As the  
majority of patients were recruited in the 1990’s, 
treatment consisted of conformal radiotherapy 
without IGRT. Dose escalation has been shown to 
significantly prevent biochemical failure in all risk 
groups in meta-analyses of randomised trials.14,15 
A meta-regression analysis demonstrates an  
advantage of 14% (82% versus 96%), 18% (71% 
versus 89%), and 19% (51% versus 70%) in low, 
intermediate, and high-risk patients, respectively,  
for the biochemical control after 5 years for doses  
of 80 Gy in comparison to 70 Gy.14 However, 
high dose radiotherapy was associated with a  
significantly greater risk of late >Grade 2 
gastrointestinal (GI) toxicity (hazard ratio 1.58 
[1.24-2]; p<0.00114 or 1.72 [1.42-2.08]; p<0.00115). No 
difference resulted in overall mortality rates (MRs) 
and PrC MRs. The 10-year-PrC specific MRs were  
8.4% in the high dose versus 9.3% in the  
conventional dose arms.15 Taking into account a  
usually slow progression of PrC, a longer followup  
will probably be required to demonstrate differences 
in survival rates in dose escalation trials. In an 
international salvage ADT trial, the time from salvage 
ADT to death was estimated at about 9 years, with 
only 17% of patients dying of PrC after 7 years.16

After a median follow-up period of 9 years, the 
MD Anderson dose escalation trial reported a  
significant disease-free survival benefit was  
reported in the group of patients with an initial 
prostate-specific antigen (PSA) >10 ng/ml (2% 
versus 15%; p=0.03) as well as in the group of high-
risk patients (4% versus 16%; p=0.05).6 As dose  
escalation increases biochemical tumour control,  
high doses of ≥76-78 Gy can be applied  
for all risk groups. The time to long-term salvage  
ADT is significantly delayed.17 Higher toxicity  
rates must be weighed up against this benefit,  
so that modern radiotherapy techniques are 
particularly important in dose escalated treatment 
concepts. For older patients, especially low-risk 
patients or intermediate-risk patients with a PSA 
<10 ng/ml, lower doses of 70-74 Gy might be 
sufficient, as biochemical recurrence leads to a 
clinical recurrence in only a small percentage of 
patients. Dose escalation to ≥76-78 Gy can be 
generally recommended for intermediate and high-

risk patients who are at greater risk of developing a 
metastatic disease. 

TARGET VOLUME

CTV always includes the whole prostate.  
Focusing irradiation only on parts of the prostate 
is not useful as PrC is known to occur multifocally.18 
As only the proximal 2 cm are involved in >90% 
of patients,19 the base of seminal vesicles should 
be included in the CTV in intermediate and high-
risk patients. The elective irradiation of pelvic 
lymph nodes (PLNs) is discussed controversially. 
Whole pelvic radiotherapy (WPR) might improve  
outcomes of patients with PLN involvement by 
sterilising microscopic disease. An advantage in 
respect of biochemical recurrence-free survival 
in comparison to irradiation of the prostate only 
could be shown in a retrospective study after 
lymphadenectomy and histologically proven lymph 
node invasion in 415 patients20 and in a large 
prospective randomised study with a total of  
1,323 patients (radiation therapy oncology group  
[RTOG] 9,413, primary EBRT), particularly with 
neoadjuvant antiandrogen therapy.21 PLNs were 
included for patients with an invasion risk of at 
least 15%. Smaller EBRT volumes encompassing 
only the true pelvis (or mini-pelvis) appear to be 
inadequate. Whole pelvic EBRT up to the level of 
the L5-S1 interspace was associated with improved 
progression-free survival rates in comparison to 
mini-pelvis EBRT or prostate only EBRT.22 The 
studies that failed to show the benefit of PLN 
irradiation, RTOG 7,707 and GETUG-01,23,24 did not 
use WPR as defined on the RTOG 9,413 study, did 
not consistently use antiandrogen therapy (AAT), 
and included relatively favourable patients. In large 
randomised studies demonstrating the benefit of 
long-term AAT for locally advanced PrC, PLNs were 
included in the target volume up to doses of 44-50 
Gy.25,26 Treatment concepts in these studies should 
be the basis for generally accepted standards.

ANDROGEN DEPRIVATION THERAPY
(ADT)

EBRT with ADT has been shown to be associated 
with a survival benefit in comparison to ADT alone 
in randomised Phase III studies in patients with 
locally advanced PrC.27,28 After a 10 year follow-up 
period, Widmark et al.27 report an improvement of 
biochemical recurrence-free survival from 26% to 
76%, disease-specific survival from 76% to 88%, and 
overall survival (OS) from 61% to 70%. Prospective 
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randomised studies have shown an OS advantage 
for EBRT with ADT in comparison to EBRT alone  
for patients with locally advanced or high-risk 
PrC. In the EORTC 22,863 study patients received 
a treatment with an LHRH (luteinising hormone 
releasing hormone) agonist for 3 years,25 and in the  
RTOG 85-31 study indefinitely or until signs of 
progression.26 Adjuvant AAT with bicalutamide 
(for a median time of 2 years) also resulted in an 
OS benefit in locally advanced PrC.29 A short-term 
neoadjuvant ADT for 4 months was associated 
with a survival benefit for patients with larger local 
tumours (>25 cm3) and a Gleason score 2-6 in the 
RTOG 86-10 study,30 in another study for patients 
with a PSA >10 ng/ml and a Gleason Score ≥7.31  
High-risk patients benefit from longer ADT  
duration (3 and 2 years) in comparison to a  
shorter duration (4 and 6 months).32,33

RTOG 94-08 randomised patients with T1b-T2b 
tumours and a PSA <20 ng/ml to a short-term 
ADT of 4 months starting 2 months before EBRT 
versus EBRT alone. The largest overall and disease- 
specific survival benefit resulted in the group of 
intermediate-risk patients, with significant increase 
of 10-year OS from 54% to 61%. No benefit resulted 
for low-risk patients.34 Thus, high-risk patients  
benefit from a longer ADT of at least 2-3 years. 
Intermediate-risk patients might benefit from  
short-term ADT of 3-6 months. Randomised 
studies must evaluate if this benefit still exists when 
higher doses of ≥76 Gy are used.35 As ADT toxicity 
profile is well-known (hot flashes, impotence, 
osteoporosis, anaemia, weight gain, gynaecomastia, 
cardiotoxicity),36 patients with comorbidities should 
be individually assessed in respect of ADT, especially 
long-term ADT. 

HYPOFRACTIONATION CONCEPTS

Hypofractionated radiotherapy is defined by 
fraction doses of more than 2 Gy. Radiobiological 
PrC data and new advanced radiation therapy 
techniques with improved dose conformity are 
leading to an increasing number of hypofractionated  
treatments. Toxicity and tumour control after 
radiotherapy can be described by the linear- 
quadratic equation. An important parameter in 
this equation is the α/β ratio, which describes 
the sensitivity of normal tissues or tumours to 
fractionation in radiotherapy. Tumours with high 
α/β values are less able to repair injury between 
fractions than normal tissues with low α/β values, 
so small fractions allow recovery of normal tissues 

while killing tumour cells. The lower α/β ratio of 
PrC compared to the surrounding late-responding 
normal tissues (e.g. the rectal wall) lays the 
potential foundation for hypofractionation to  
improve tumour control without increasing the risk 
of late effects in normal tissues.37

Currently available Phase III studies indicate similar 
biochemical outcomes for the hypofractionated 
in comparison to conventionally fractionated 
treatment concepts (Table 2).37-42 Toxicity results 
were also without statistically significant differences, 
particularly regarding long term toxicity,37-42 though 
Pollack et al.40 found worse urinary function after 
hypofractionated radiotherapy in the subgroup 
of patients with compromised urinary function 
before treatment.40 Older studies, using doses 
below the current standard (60-64 Gy in 2 Gy 
fractions in the conventional arms) reported higher 
biochemical failure rates in the hypofractionated 
arms.41,42 Several Phase I and II studies with extreme  
hypofractionation have been published, using 
fractions of 6-10 Gy up to total doses of 36-
50 Gy.43 Katz et al.44 treated 477 patients. The 
majority received a total dose of 36.25 Gy in 
7.25 Gy fractions. Biochemical control rates of 
≥90% in low and intermediate-risk patients were 
reported after a median follow-up of 6 years. 
Phase III studies are currently recruiting. Extreme  
hypofractionation usually requires stereotactic 
techniques, including unique beam arrangements, 
stable immobilisation, motion control, and daily 
image guidance. 

SIMULTANEOUS INTEGRATED BOOST TO
INTRAPROSTATIC LESION

Focusing the dose escalation on the actual tumour 
has the potential to increase tumour control  
without increasing toxicity. Local PrC recurrence 
after primary EBRT usually originates in the 
location of the primary tumour, as demonstrated 
in studies comparing magnetic resonance imaging 
(MRI) before EBRT and at the time of recurrence.45 
MRI, magnetic resonance spectroscopy (MRS), 
and positron emission tomography (PET) with 
choline, acetate, or prostate-specific membrane 
antigen (PSMA) are suitable methods to localise 
intraprostatic lesions with an adequate sensitivity 
and specificity.46,47 T2 weighted, diffusion-
weighted, and contrast-enhanced sequences are 
the recommended key sequences for PrC detection  
and localisation in multiparametric MRI. MRS 
indicates the metabolism within the tissue.  
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High choline peaks indicate malignant areas, 
correlating to a higher ratio of cellular membranes per  
volume and a higher turnover of phospholipid 
membranes within the carcinoma.46

Molecular imaging by means of PET provides 
another method to study metabolic activity of 
tumours in vivo. PSMA has been used increasingly 
in recent years, tending to show a higher proportion 
of patients with suspected disease in comparison 
to other tracers.47 The hybrid technology PET/CT 
reduces image fusion mismatches significantly. 
Studies comparing PET results with histological 
PrC specimens reported a specificity and positive 
predictive value between 80-90%.48 Treatment 
planning studies applying 18F-choline PET/CT,  
MRI/MRS, or angiotensin-converting enzyme 
PET-CT demonstrated a considerable potential 
for dose escalation to the macroscopic tumour 
with only minor changes of the dose to the 

organs at risk and normal tissue complication  
probability.49,50 The opportunity for an improved  
adaptation of treatment plans for the individual 
patient results.

Clinical data on acute toxicity in a group of 118 PrC 
patients after dose escalation with a simultaneous 
integrated boost (SIB) technique to an MRI/MRS 
detected tumour (76 Gy median dose to PTV and 
80 Gy median dose to gross target volume [GTV] 
prescribed) did not find an increase of severity or 
incidence of acute toxicity.51 The additional SIB did 
not increase quality of life (QoL) changes in the  
acute phase or >1 year after radiotherapy in a QoL 
study.52 Long-term results, including biochemical  
and clinical tumour control, have not been reported 
yet. Phase III studies are examining focal dose 
escalation up to 95.5 Gy, with doses of 76 Gy in 2  
Gy fractions or 77 Gy in 2.2 Gy fractions to the  
whole prostate.53

Table 2: Randomised Phase III hypofractionation trials.

Reference Patient 
number Patient population Median 

follow-up Fractionation
Biochemical 

recurrence free 
survival

Lukka et al.41 936 Stage T1-T2 
PSA <40 ng/ml 6 years

60 Gy/2 Gy 60%

52.5 Gy/2.63 Gy 53%

Pollack et al.40 303 Intermediate and 
high risk 6 years

78 Gy/2 Gy 79%

70.2 Gy/2.7 Gy 77%

Yeoh et al.42 217 Stage T1-T2 7 years

64 Gy/2 Gy 34%

55 Gy/2.75 Gy 53%

Arcangeli et 
al.38 168 High risk 6 years

80 Gy/2 Gy 79%

62 Gy/3.1 Gy 85%

Dearnaley et 
al.39 457 Stage T1-T3a, 

PSA <30 ng/ml 4 years

70 Gy/2 Gy -

60 Gy/3 Gy -

57 Gy/3 Gy -

Hoffman et al.37 203
Stage T1-T3b 

PSA <20 ng/ml, 
Gleason score <10

6 years

75.6 Gy/1.8 Gy -

72 Gy/2.4 Gy -

PSA: prostate-specific antigen.
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SPACER APPLICATION 

Rectum toxicity is the dose-limiting toxicity. 
Dose-volume correlations have been reported in 
many studies. Hyaluronic acid, human collagen, 
an inflatable balloon, or hydrogel are potential 
materials that have been used in clinical studies to 
create a prostate-rectum separation effectively.54 
The injection or implantation is performed under 
transrectal ultrasound guidance via the transperineal 
approach under local, spinal, or light general 
anaesthesia.54 Spacer insertion is facilitated by a  
prior hydrodissection, helping to place the spacer 
between Denonvilliers’ fascia and anterior rectal 
wall, using the same 18-gauge spinal needle. The 
implantation of a biodegradable balloon implies  
an incision of 3-5 mm and 1.5 cm depth.55  
A distance of about 1 cm results after spacer  
injection or placement, leading to significantly  
lower rectal doses. Injections of up to 20 ml of 
spacer volume usually created a space of 1-1.5 cm 
between the prostate and rectal wall.56,57 Studies 
have shown stable spacer volumes during the  
radiotherapy period.55,58

Well-tolerated injection or implantation techniques 
and low rectal treatment-related toxicity have  
been demonstrated in prospective studies.59,60 GI 
toxicity was evaluated in a group of 48 patients 
in a multi-institutional study. Only 12% of patients 
experienced Grade 2 acute GI toxicity (no patients 

with Grade 3 or higher toxicity) and 7% (two 
patients, one of them with Grade 1 at baseline 
already) experienced Grade 1 late GI toxicity within  
12 months after treatment (no patients with Grade 
2 or higher toxicity).60 Long-term clinical results 
and the results of randomised studies are needed 
to better define the beneficial effect for the patient. 
Nevertheless, randomised trials are needed to  
define the benefit on the best level of evidence. 
The first randomised trial, evaluating the hydrogel 
spacer injection, has already closed patient accrual. 
An example for hypofractionated dose escalation 
to a simultaneous integrated boost with a hydrogel 
spacer is demonstrated in Figure 1. PrC was  
diagnosed in the left peripheral lobe in MRI and  
PSMA PET. A plan was calculated with a total dose  
of 78 Gy to the prostate in 2 Gy fractions,  
simultaneously 93.6 Gy in 2.4 Gy fractions to the 
intraprostatic lesion (GTV). Only 0.5% of the rectum 
volume was included within the 70 Gy isodose, so  
that extremely high doses can be delivered even 
to peripheral lesions without the risk of relevant  
rectal toxicity.

CONCLUSION

Radiobiological PrC data, technical advances in  
imaging techniques, treatment planning, and  
treatment delivery changed external beam 
radiotherapy standard concepts and led to new 
concepts that need to be evaluated in the near  

A B C

Prostate

PTV boost

GTV

PTV prostate

Spacer

Rectum

Figure 1: Simultaneous integrated boost to intraprostatic lesion with hydrogel spacer.
Tesla-2 weighted magnetic resonance imaging (A), prostate-specific membrane antigen positron emission 
tomography–computed tomography with spacer (B), isodose distribution with spacer and contours for 
treatment planning (C) in axial slices.
PTV: planning target volume; GTV: gross target volume.
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future. The current standard implicates the delivery  
of a high conformal dose to the prostate with 
small safety margins, resulting from the application  
of daily image guidance. Hypofractionated 
radiotherapy is used increasingly, as data of  
prospective randomised trials are available with  
follow-up periods of several years. Extreme 
hypofractionation, definition of a simultaneous 

integrated boost with a focused dose 
escalation, and the application of a spacer to  
protect the rectal wall are promising concepts that 
need to be evaluated in randomised Phase III trials. 
They might develop to new standards, making 
radiotherapy a convenient treatment with low 
toxicity and high tumour control rates.
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