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ABSTRACT

Although early pregnancy loss is a common complication of human reproduction, a significant proportion  
of miscarriages still happen for unknown reasons. Nuclear receptors are key players in trophoblast  
invasion and metabolism; therefore, their agonists and ligands are a promising target for the prevention  
of miscarriage. This review gives an overview of the existing data and literature concerning the  
involvement of nuclear receptors in maintaining a viable pregnancy.
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INTRODUCTION

Spontaneous miscarriage occurs in 12-15% of known 
pregnancies, whereas 30% of all conceptions are  
lost between implantation and the sixth week. 
The risk of subsequent miscarriage increases with 
maternal age and with the number of previous 
miscarriages.1 Recurrent miscarriage (RM) is defined 
as three or more consecutive miscarriages. The 
risk of recurrent spontaneous miscarriage is much 
higher in patients with previous losses: the risk of 
miscarriage after two consecutive losses is 17-25% 
and the risk of miscarrying a fourth pregnancy 
after three consecutive losses is 25-46%. Yet 
there remains an unsolved problem: up to 50% of 
cases of recurrent losses do not have a clearly  
defined aetiology.2

ROLE OF ESTABLISHED UNDERLYING
CAUSES

Chromosomal abnormalities linked to maternal 
age are common risk factors for miscarriage.3 
Approximately 50-60% of early spontaneous 
miscarriages are associated with a chromosomal 
anomaly of the conceptus. The most common 
abnormality is aneuploidy, with autosomal trisomy 

accounting for >50% of chromosomally abnormal 
abortuses.4 In the case of RM, multiple underlying 
causes have been identified besides karyotype 
changes: uterine pathologies such as uterus  
arcuatus, which is a uterus with a fundal impression 
and which accounts for 15% of all women with RM;5 
endocrine dysfunctions, e.g. thyroid disorders; and 
autoimmune diseases, e.g. acquired or inherited 
thrombophilic disorders.6 Investigations have shown 
that some RM patients remain in a permanent 
prothrombotic state outside pregnancy.7 

Apart from the reasons mentioned above, the cause 
of RM remains unknown in up to 50% of cases.8 
Therefore, identification of possible risk factors is a 
focus of current research. This article summarises 
evidence for the known implications of nuclear 
receptors in spontaneous miscarriage and in RM.  
For readers with further interest in the physiological 
roles of nuclear receptors in pregnancy, we 
recommend the following reviews: McCarthy et 
al., 2013 (role of peroxisome proliferator-activated 
receptor [PPAR]);9 Beltowski and Semczuk, 2010 
(role of liver X receptor [LXR]);10 and Mark et al., 
2009 (role of retinoid X receptor [RXR]).11
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ROLE OF NUCLEAR RECEPTORS IN 
RECURRENT MISCARRIAGE

The large ligand-activated nuclear receptor 
superfamily includes PPAR, the retinoic acid 
receptors (RARs), RXR, the thyroid hormone 
receptors (THRs), LXR, the vitamin D3 receptors, and 
the steroid receptors. These receptors all function 
as transcription factors and, after ligand activation, 
they bind DNA as homo or heterodimers and 
regulate gene expression.12 A recent investigation 
showed that some of these receptors are crucially 
involved in the process of spontaneous and  
recurrent miscarriage.

ROLE OF PEROXISOME PROLIFERATOR-
ACTIVATED RECEPTORS IN 
MISCARRIAGE

This group of nuclear receptors is named for their 
ability to induce hepatic peroxisome proliferation 
in mice. Three PPAR isoforms (α, β/δ, and γ) have  
been identified to date and are encoded by  
different genes. PPARs are a key regulator of cell 
differentiation, the cell cycle, and the induction 
of apoptosis.13,14 PPARγ is the isoform with the 
greatest influence on metabolism and is a strong 
regulator of the immune system and a key player 
in carcinogenesis. PPARγ binds to a specific DNA 
response element as a heterodimer with the RXR.14

PPARγ is of great interest in the field of miscarriage 
research for many reasons, such as its role in 
the regulation of fatty acid storage, glucose  
metabolism, and insulin sensitivity. In addition, 
PPARγ is involved in trophoblast differentiation 
and invasion,15 as well as being a key player in anti-
inflammatory processes,16 and so this receptor can 
make an impact on the process of miscarriage in 
multiple ways. PPARγ disposes of a wide range of 
natural and synthetic ligands, such as 15-deoxy-
Δ12,14-prostaglandin J2, fatty acids including  
oxidised lipids, monounsaturated fatty acids such 
as oleic acid, and polyunsaturated fatty acids like 
linoleic acid and arachidonic acid.17-19 In addition 
to their importance in miscarriage research, 
the clinical relevance of these receptors can be 
seen by the fact that synthetic PPARγ agonists, 
such as thiazolidinediones (TZDs), are already in 
widespread use in diabetes therapy in order to  
improve insulin sensitivity.12

PPAR is not only a key player in metabolism,  
however, as studies on PPAR-null mutant 

mice revealed the central role of PPAR in fetal  
development and placentation. PPAR enhances 
the invasion of the placental trophoblast and 
therefore plays a major role in maintaining a 
viable pregnancy.15-20 In a human in vitro model, 
cytotrophoblast invasion was abrogated in a  
dose-dependent manner by PPARγ stimulation, 
with its blockade leading to increased extravillous 
trophoblast (EVT) invasion.21,22 Furthermore, 
PPARγ stimulation altered the differentiation of 
syncytiotrophoblast (ST),20 and PPARγ ligands 
induced human chorionic gonadotropin (hCG) 
production in human trophoblasts.23

Further studies in miscarriage research have  
revealed that PPAR activation is connected with 
leptin: PPAR and leptin are two important adipose 
tissue factors involved in the regulation of energy 
metabolism.24 Leptin is a regulator of satiety and 
energy homeostasis. It is synthesised in adipose 
tissue and also in the placenta, especially in the ST  
and EVT.25 Proinflammatory cytokines, such as  
tumour necrosis factor alpha (TNFα) and interleukin 
1 (IL-1), may also directly induce leptin gene 
expression. Toth et al.26 demonstrated that in 
normal and disturbed pregnancy there seems to be 
regulation of leptin triggered by nuclear hormone 
receptors such as PPARs and their coactivators. 
Enhanced expression of PPAR/RXR was identified 
in EVTs and STs of miscarriage. Leptin expression 
in the ST was lowest in miscarriages and highest  
in mole pregnancies. 

Leptin induces hCG production in trophoblast cells.27 
Leptin production is upregulated during normal 
pregnancy, and leptin gene expression is regulated 
by a variety of hormones including oestrogen, 
which is responsible for the upregulation during 
pregnancy. Decreased leptin levels are associated 
with miscarriage.28 The leptin-mediated secretion  
of proinflammatory cytokines such as IL-1, IL-6,  
TNFα, and prostaglandin E2 (PGE2) is inhibited 
through PPAR activation.29,30 With regard to the 
dynamic interaction between PPARγ and leptin, 
there may be a potential strategy for intervening 
in the process of miscarriage: activation of PPARγ 
by natural ligands or TZDs inhibits leptin gene 
expression and leptin release both in vivo and in 
vitro.31,32 PPARγ agonists positively regulate hCG, 
leptin, and human placental lactogen.20 If these 
mechanisms are of any benefit in the prevention 
of miscarriage then they should be evaluated in  
future studies.
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ROLE OF RETINOID X RECEPTOR IN
MISCARRIAGE

The RXR consists of three isotypes that are  
referred to as RXRα, RXRβδ, and RXRγ.33 All 
three RXR isotypes are potentially important in  
maintaining a viable pregnancy, as they are all  
involved in cell proliferation, cell differentiation, 
embryonic patterning, and organogenesis,34 
but it is especially RXRα that is a key regulator 
during embryogenesis and morphogenesis.35 The 
heterodimer of PPARγ and RXRα regulates the  
uptake of fatty acids in trophoblasts, which 
is essential for embryonic development and 
production of placental steroid hormones.16,36 
Furthermore, both partners promote trophoblast 
differentiation, possibly because they induce the 
secretion of important hormones such as hCG, 
leptin, and lactogen.20 Homozygous RXRα-null 
mice die between embryonic days (E)13.5 and 
E16.5,37,38 which highlights the role of RXRα during  
embryonic development.

Potentially, RXRα represents a potent target in 
the treatment of RM: invasion of cytotrophoblasts 
is indirectly correlated with the concentration of  
RXRα and PPARγ.16 Enhanced expression of RXRα  
in EVTs and villous trophoblasts of miscarried 
placentas was recently identified, and an increased 
number of apoptotic EVT is present in miscarried 
placentas.35 RXR and its heterodimeric partner 
RAR can be activated by vitamin A derivatives 
termed ‘retinoids’.39 A likely conclusion is that 
RXRα plays an important role in the induction of 
apoptosis. Downregulation of RXRα, as observed 
in choriocarcinoma cells and trophoblasts, may 
serve as a protection against apoptosis and  
miscarriage.35 In addition, increased retinoic acid, 
which is the main agonist of RXR, has an inhibitory 
effect on genes essential for implantation in the 
glandular epithelium (GE).40 These results are in 
line with our findings of RXR upregulation in GE 
of miscarriage: the nuclear receptors PPARγ and  
RXRα are negatively correlated in the decidual 
tissue cells of physiological pregnancy, whereas  
this correlation is lost in miscarriage. Because 
expression of PPARγ is unchanged in abortive 
tissue compared with normal controls, we assume 
that upregulation of RXRα in abortive tissue is  
responsible for the loss of negatively correlated  
PPARγ/RXRα expression.

Combination of PPARγ with RXRα is essential 
for trophoblast differentiation, with the receptor 
complex inducing the secretion of gestational 

hormones such as hCG, leptin, and lactogen.20,41 
The heterodimer further regulates the uptake 
of fatty acids in trophoblasts, which is crucial  
for the production of placental steroid  
hormones and fetal growth.16,36 Because invasion  
of cytotrophoblasts is indirectly correlated with 
the concentration of RXRα and PPARγ,16 and 
the latter plays a specific role in trophoblast 
differentiation, function,15,42 and fetal development,18 
the replacement by RXRα is likely to disturb 
physiological development during pregnancy. 
Furthermore, the isotype of RXRα plays an essential 
role during embryogenesis and morphogenesis,43 
and protects against apoptosis in trophoblasts, 
and so the enhanced expression of RXRα in 
miscarriage is twice as disruptive in early pregnancy.  
Expression of RXRα is increased in GE and 
trophoblasts during miscarriage and correlation 
analysis shows that increased LXR and RXR 
expression takes place during miscarriage, whereas 
LXR and PPARγ are upregulated simultaneously in 
regular GE. The loss of physiological correlation in 
nuclear receptors is supposedly responsible for  
the deficit in the regular function of trophoblasts 
and embryonic tissue. 

ROLE OF LIVER X RECEPTOR IN
MISCARRIAGE

LXR is a physiological regulator of lipid and 
cholesterol metabolism that also acts in an anti-
inflammatory capacity. Because LXRs control 
diverse pathways in development, reproduction,  
metabolism, and inflammation, they have 
potential as therapeutic targets.44 LXRs are 
expressed in human and mouse trophoblasts 
and the placenta from early gestation,45 and are 
regulators of trophoblast invasion46 and maternal–
fetal cholesterol transport,10,47 which makes them 
key players for successful placentation and  
embryonic development.48

LXR expression is downregulated in the ST of the 
placenta of a spontaneous abortion. However, 
the difference is greatest in the decidua of  
miscarriage; in the decidua of RMs there is 
no expression of LXR at all. Therefore, the 
downregulation of LXR could be a signal of  
excessive oxidative stress in the ST of spontaneous 
abortions. In RM, however, there is a strong  
immune modulation component and additional 
mechanisms, which, together with oxidative stress, 
can cause abortion.49 Strong downregulation of 
LXR in the EVT and no significantly altered  
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expression in the ST occurs in RM. Therefore, 
pregnancy loss occurs in RM before oxidative 
damage reaches the ST layer of the placenta.

In addition, double-immunofluorescence staining 
showed that LXR, as well as RXRα and PPARγ, is 
expressed by the EVT, and RXRα and LXR showed 
co-expression in the same EVT cells. In the ST, a 
positive correlation for the combination of LXR/
PPARγ occurs in abortions and there is a negative 
correlation for LXR/RXRα.48 LXR activation with 
synthetic or natural ligands inhibits trophoblast 
invasion in vitro,42 therefore correlation of LXR and 
RXRα might be a sign of increased maternal–fetal 
cholesterol transport. Plösch et al.47 showed that 
LXR upregulation leads to increased expression 
of the LXR target genes ABCG1 and ABCA1. This 
mechanism is believed to increase the cholesterol 
flux from mother to fetus.47 This may be indicative 
of pronounced demand during embryogenesis, 
as cholesterol is crucially involved in neural 
pattern formation via hedgehog proteins and in  
brain development.50-52

The GE of the uterus and the EVT form the decidua. 
The GE is known to be crucial for blastocyst 
implantation and decidualisation in pregnancy,53  
and it further provides a nutrient-rich environment  
to support embryonic development until the 
placenta is functional.54 Expression of PPARγ 
and LXR is unchanged in the GE of miscarriage: 
expression changes in these receptors are  
restricted to trophoblasts. In the GE of  
physiological pregnancy, a positive correlation 
between LXR and PPARγ was demonstrated  
(Knabl et al., unpublished data): here we can  
speculate that LXR and PPARγ are upregulated 
simultaneously in regular GE. As this correlation was 
not found in abortive tissue, increased LXR and  
RXR expression can be seen in miscarriage. Proper 
function of the GE plays a key role in implantation  
of the conceptus and decidualisation of the uterine 
stroma.53,55 As increased LXR signalling reduces 
synthesis and secretion of hCG from trophoblast 
cells,56 and decreases trophoblast invasiveness by 
matrix metalloproteinase 9,57 these effects may be  
a consequence of a disturbed function in GE. 

ROLE OF THYROID HORMONE 
RECEPTORS IN MISCARRIAGE

Thyroid hormones are essential for the maintenance 
of pregnancy, and a deficiency of maternal 
thyroid hormones has been associated with early 
pregnancy loss.58 The ligands of THRs play a 

major role in trophoblast differentiation and fetal 
neurodevelopment.59 Thyroid hormones bind to 
specific nuclear receptors. Two genes, THRA (NR1A1) 
and THRB (NR1A2), encode the isoforms THRα  
and THRβ which code for the four ligand-binding 
thyroid receptors THRα1, THRβ1, THRβ2, and THRβ3, 
and the four non-ligand binding receptors.60,61  
While the isoforms THRα1, THRα2, and THRβ3 
are widely expressed, the expression of THRβ2 
is restricted to the hypothalamus and pituitary  
gland.62 The hormone T3 is the high-affinity ligand 
of THR and thereby regulates gene transcription.63  
After this hormone has bound to the ligand- 
binding site, the THR switches to its active form  
and recruits specific co-activators such as  
SRC1-3 and PGC-1.64 A two-fold increase in  
miscarriage and stillbirth rates can result from  
untreated hypothyroidism.65 Hyperthyroidism and  
autoimmunity can also have severe effects on 
pregnancy outcome. Therefore, the maintenance 
of a euthyroid state is crucial during pregnancy 
and necessary for the prevention of disturbed 
placentation syndromes such as pre-eclampsia and 
intrauterine growth restriction.65 Results obtained  
by our group show that expression of the 
THRs: THRα1, THRβ2, THRβ1, and THRβ2 is  
downregulated in abortive placentas, which also 
leads to miscarriage. The THRs are predominantly 
expressed in decidual stromal cells.66 Only THRβ2 is 
also expressed in EVT cells. PPARγ expression was 
also investigated by our group and we identified 
an upregulation of PPARγ in miscarriage.16,35,66,67 
Interestingly, a recent study showed that activation 
of PPARγ signalling via rosiglitazone induced a 
strong downregulation of both THRα and THRβ 
in both brown adipose tissue and in rats in vivo.68 
Based on these results, we may speculate that 
the downregulation of THRs is also mediated by 
activated PPARγ, and probably the RXR system, 
in abortion. 

SUMMARY

Nuclear receptors are key players in maintaining 
a viable pregnancy and play an important role in 
spontaneous miscarriage and RMs:

•	 The expression of the nuclear receptors PPARγ, 
RXRα, LXR, and THRs is altered in miscarriage: 
this group of nuclear receptors is important for 
embryogenesis and trophoblast invasion.

•	 Enhanced expression of PPAR/RXR was 
identified in the EVTs and STs of miscarriage. 
Expression of PPARγ and LXR was unchanged 
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in the GE of miscarriage: expression changes of 
these receptors are restricted to trophoblasts. 

•	 RXRα expression is increased in miscarriage 
in the GE and trophoblasts, and correlation  
analysis showed that increased LXR and 
RXR expression takes place in miscarriage, 
whereas LXR and PPARγ are upregulated  
simultaneously in regular GE. The loss of 
physiological correlation in nuclear receptors is 
supposedly responsible for the deficit in regular 
function in trophoblast and embryonic tissue. 

•	 LXR expression is downregulated in ST and 
EVT in spontaneous miscarriage. A strong 
downregulation of LXR in the EVT and no 

significantly altered expression in the ST occurs 
in RM. Therefore, pregnancy loss occurs in RM 
before oxidative damage reaches the ST layer  
of the placenta.

•	 Expression of the THRs: THRα1, THRα2, THRβ1, 
and THRβ2 is downregulated in abortive 
placentas, which also leads to miscarriage. The 
THRs are predominantly expressed in decidual 
stromal cells.

Future research should focus on the investigation of 
existing agonists and antagonists in the prevention 
of miscarriage in order to bring experimental data 
towards achieving clinical improvement.
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