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ABSTRACT

Alternatives for liver transplantation in severe liver disease are urgently needed in view of the limited 
availability of donor livers. The use of embryonic stem cells (ES) or hepatic progenitor cells (HPC) has  
been investigated in mice models of acute and chronic liver failure. To extrapolate the findings in inbred 
mouse strains (weighing around 20 g, with a maximal lifespan of 3 years) to the genetically more variable 
human beings (around 3,000-fold heavier and living 30 times longer), does seem a bit of a large step.  
This article describes recent developments in HPC research in dogs and compares these findings to 
experimental rodent studies and human pathology. Recent progress in canine liver stem cell research and 
canine genetics are combined to exemplify their possible role as a relevant animal model for the feasibility 
of stem cell transplantation in human liver failure.
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INTRODUCTION

The limited availability of donor livers is  
one of the drawbacks in liver transplantation.
Regenerative medicine, not only in hepatology, 
is at a crossroads between fundamental  
research and the clinical application of either  
stem/progenitor cell or differentiated cell (for 
liver research, the hepatocytes) transplantations.1  

Where transplantation of fully differentiated 
hepatocytes seems obvious for parenchymal  
diseases, their application in biliary diseases seems 
of little meaning. In contrast, hepatic progenitor 
cells (HPCs) have the potential to differentiate into 
both hepatocytes and cholangiocytes, offering a 
potential treatment modality for parenchymal and 
biliary diseases. The presence of HPCs has been 
under dispute for about five decades, ever since  
the first description by Farber in 1956.2 The  
necessity of these cells seems limited since fully 
differentiated hepatocytes and cholangiocytes 
can, in contrast to most other differentiated cells, 
proliferate.3 This is exactly what they do in acute  

liver failure or after partial hepatectomy. However, 
in those circumstances where their replication is 
hampered, HPCs come into play in an effort to 
repopulate the affected liver. HPCs reside in the 
Canals of Hering, where they are in close proximity 
with stellate cells, Kupffer cells, together constituting 
the HPC-niche. Histologically, HPC activation in 
a diseased liver section is described as ‘ductular 
reaction’ or ‘bile duct proliferation’.3 This indicates 
that activation of HPC could be beneficial for 
the liver to recover upon injury. At the same time, 
there is a potential down-side of activated HPC.  
The two-faced (Janus-like) character of HPCs is  
shown by the presence of progenitor cell markers  
in hepatocellular carcinoma (HCC), indicative 
for malignancy in humans and dogs.4,5 Since 
potential risks and lack of data from hepatocyte 
transplantations are the most common restriction  
for participating in a Phase I hepatocyte transplant 
trial, it is clear that animal models predicting 
long-term risk/benefits are urgently needed.6 In 
this paper, the predictive potential of dogs in cell 
transplantation in diseased livers is addressed.
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Requirements for Animal Models

Important requirements for a good animal model 
in liver cell transplantation studies include: firstly, 
phenotypic resemblance with the human clinical 
situation, and secondly, good experimental 
controllability. The phenotypic resemblance is 
evaluated below with emphasis on HPCs and  
their activation differences in liver diseases in  
both men and dogs. The controllable, and thus 
reproducible, experimental set-up is described 
in view of the specific population structure in  
different dog breeds.

THE HPCS

HPCs are present as quiescent cells in healthy 
adult liver tissue in small numbers in the Canals  
of Hering, the smallest ramifications of the  
intrahepatic biliary tree. Located close to the portal 
area they are at the interface between hepatocytes 
and cholangiocytes.7 Although simply stated 
as HPCs, their cellular origin remains an area of  
debate, let alone the question of whether one 
or more HPC pools do exist. A number of studies  
state a possible biliary origin of HPCs, whereas  
other studies in humans describe extrahepatic 
peribiliary glands as the prime location for  
HPCs, and the haematopoietic origin of HPCs is 
also suggested several times.8-17 For this review,  
we focus on the HPC-niche within the Canals of  
Hering, as described in numerous mammals.3,18-21

HPCs can be histologically characterised by a 
combination of their specific morphology upon 
activation (the so-called ductular reaction) and by 
non-cell specific marker expression.7 The classical 
HPC-markers, including the cytokeratins keratin-7 
(K7) and keratin-19 (K19), are expressed on 
cholangiocytes too, which underpins the necessity 
to combine marker expression with histology. The 
same non-HPC specificity holds true for other  
stem cell markers including CD133 (PROM1) and 
EpCAM, which are for instance expressed on  
other stem cells.22 In view of the versatile character 
of HPCs it is no surprise that mesenchymal  
markers such as CD29 (integrin β1) and CD44 
(hyaluronic acid receptor and co-receptor for 
hepatocyte growth factor) are expressed on  
HPCs. For an extended list including other  
species see Kruitwagen et al.23 For only a subset  
of markers, for instance ABCG2, CD44, CD133,  
K7, and K19, the expression is measured in all  
three species.20,24-26

HPC Activation in Liver Diseases

Just a few publications describe the HPCs and the 
HPC-niche in dogs, and make a comparison with 
either mice and/or humans.27,28 This comparison is 
mainly based on immunohistochemical analyses.  
In contrast to humans, in mice and dogs the 
availability of healthy liver samples allows for a 
diseased-healthy comparison. It must be taken  
into account that the aetiology of human liver 
diseases is often different from the experimental 
mouse models. Virus-induced hepatitis is difficult  
to induce experimentally, but, as outlined below, 
hepatic copper toxicosis can be observed in all  
three species. The location and characteristics  
of quiescent canine HPCs and portal  
myofibroblasts were characterised in healthy 
livers. HPCs were located in the space of Disse, 
as previously described for other species.29 A 
descriptive immunohistochemical study evaluated 
the inflammatory infiltrate and fibrosis in samples  
of canine chronic hepatitis. A positive correlation 
was found between the stage of fibrosis  
and the number of myofibroblasts (alpha-SMA  
positivity) and bile duct proliferation.30 

Another study reported a positive correlation 
between tenascin-C expression, a specific  
component of the extracellular matrix (ECM), 
and stage of fibrosis, degree of inflammation, and 
the number of K7 positive cells in canine chronic 
hepatitis.31 These findings extend the knowledge 
derived from murine and human samples to the 
canine HPC-niche and its activation during severe  
liver disease. For more direct human-dog 
comparisons, the relation between HPCs, stellate 
cells, fibrosis, and disease severity in healthy and 
diseased livers, was described in liver samples  
from both species. In liver disease with fibrosis, 
HPC activation was most pronounced and  
activated stellate cells were in close proximity to  
the ductular reaction.32,33 Suggestive for having 
a crucial role of ECM, the component laminin  
co-localised with activated stellate cells and  
HPCs and macrophages clustered at the site of  
injury, more specifically periportally in acute 
hepatitis and in the fibrotic septa in chronic hepatitis 
[unpublished data].

HPCs in Regenerative Medicine

Having established, as summarised from marker 
expression in Table 1, that HPC-activation in  
rodents, dogs, and men is highly similar, both at  
the histological and at the molecular level, the 
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question arises of how to implement these findings 
into a canine model of HPC transplantation for  
the benefit of human clinical practice.

Autologous versus allogenic and ex vivo culture 
versus in vivo stimulation

In my opinion, technically it is possible to harvest 
autologous HPCs, expand them in culture 

and differentiate them into hepatocytes for 
transplantation purposes. This process is most likely 
too time-consuming for acute liver failure. In the 
case of inherited metabolic disease, gene correction 
could be applied before transplantation. Healthy 
dog livers contain a ‘side population’ enriched in 
progenitor cells, and canine HPCs can be cultured 
in vitro upon isolation from healthy liver tissue.34,35 

Marker Mouse Dog Human
A6 82, 83

ABCG2/BCRP1 84 20 20, 34

AFP 88 34, 89, 90, 91

Albumin 85 90, 91, 92

DLK 86

c-Kit 34, 91

CD 24 83

CD29 88 89

CD44 36 88 34, 90, 91

CD73 89

CD90 89

CD133 36, 85, 86, 87 88 34

CLDN3 90

Chromogarnin-A 90, 93

EpCAM 83, 85, 86 94, 95

FN14/TWEAK-R 86 88

HNF4-alpha 88

ICAM1 90

Keratin-7 9, 85 28, 20, 88 20, 28, 34, 35, 
 38, 94, 95, 96

Keratin-8 90, 95

Keratin-18 90, 95

Keratin-19 79, 10, 85, 86 28, 88 28, 34, 35, 38, 91,  
92, 94, 95, 96

Lgr5 36

NCAM 34, 90, 94

OPN 10 88

OV6 94, 95

Sca1 86

Sox9 9, 10, 36, 86, 87 88

Vimentin 89

Table 1: Markers used to investigate mouse, dog or human hepatic progenitor cells. Due to space limitations, 
reference to all original papers has not been possible, therefore occasionally only reviews are referred to. 

For an extended list with more markers and more mammals including rats and cats see Kruitwagen et al.,97 
from which this table is adapted.
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Using a plate-and-wait method, colonies of canine 
HPCs grew from the non-parenchymal fraction of  
a digested liver sample within a few weeks. As  
stated above, in cases of urgent clinical need, 
this culture method as an autologous source for 
transplantation would not be feasible. In chronic 
cases, however, this would be an option and  
would circumvent rejection issues. Optimisation 
of culture conditions of primary HPCs is needed  
in addition to characterisation of cells in culture,  
most importantly, self-renewal and differentiation 
capacity and stability. A promising recent 
development, more specific than ‘side population’ 
or plate-and-wait, is the discovery of the Wnt- 
driven stem cell marker Lgr5 positive cells in 
injured mouse livers that can be fluorescence-
activated cell sorted (FACS) or isolated as ‘ducts’ 
and form organoids upon 3D culturing.36 These cells 
rapidly expand, have the capacity to differentiate 
into hepatocytes, and can be kept in culture for 
more than a year, while maintaining their genomic  
integrity. The existence of canine liver organoids 
needs to be established.

More challenging is the in vivo stimulation of HPCs. 
For this, it is of utmost importance to unravel the 
molecular pathways involved in HPC activation 
(proliferation, migration, differentiation). This has 
been extensively studied in rodent models, and to 
a lesser extent, in human and canine samples.37-44 
Amongst the activation signalling pathways are 
the well-known stem cell regulators such as Wnt/
beta-catenin and Notch signalling. Since activating 
mutations in these pathways leads to various  
forms of cancer, it is obvious that long-term follow-
up of interference in these pathways is needed 
before its application in the human clinical setting. 

Liver Tumours

There is an obvious association between HPCs 
and liver tumours, both in man and dog. This 
association is plausible as HPCs have self-renewal 
capacity and migratory potential, which is required 
for invasion and metastasis.45 HPCs are described 
as a possible cell of origin for HCC, although this 
lineage relationship is not directly proven.4,46-49 
Alternatively, the presence of HPC markers in HCC 
is in line with the possible de-differentiation of 
fully matured hepatocytes undergoing malignant 
transformation, and subsequently the expression  
of immature markers such as K19 in HCCs.44,50  
There is overwhelming clinical evidence that 
expression of HPC markers, especially K19, in 
human HCC is a negative prognostic indicator, as 

these tumours show a higher recurrence rate and 
shortened patient survival.4,50 In dogs, the presence 
of progenitor (K19) and malignancy (glypican-3) 
markers was evaluated immunohistochemically;  
the occurrence of K19 positive HCCs was 12%, which 
resembles the prevalence in humans.5 Whether,  
in line with the stem cell marker expression in  
HCC, men and dogs are similar regarding Wnt and 
Notch signalling in HCC remains to be answered.

HOW TO PROCEED?

With respect to HPC transplantation, metabolic 
diseases will probably be the first to be addressed 
in dogs. Transplantation of hepatocytes has been 
reported in a few studies of Dalmatians as a model 
for hyperuricosuria.51-53 In order to standardise 
the experimental conditions as much as possible,  
a large or mid-sized animal model with a well-
defined and simple inheritable disease, and a 
clear phenotype, is ideally suited to evaluate route 
of cell transplantation (e.g. portal vein versus 
hepatic artery), to measure short-term transplant 
engraftment and restoration of liver function. The 
lifespan allows investigation of long-term effects 
including the potential risk of tumour formation 
initiated by the transplanted cells. 

In the mid-seventies, a progressive form of chronic 
hepatitis, accompanied by high levels of liver  
copper, was first described in the Bedlington Terrier 
in the United States.54 It took almost three decades 
before the responsible gene was identified by  
means of positional cloning.55

A genomic deletion of 39.7 kb covering exon 2  
of the COMMD1 (the gene formerly known as 
MURR1) gene caused a complete absence of the 
protein product, leading to extreme accumulation 
of hepatic copper.55,56 Gene silencing and COMMD1 
-/- mice and dogs confirmed its role in hepatic 
copper accumulation.57-60 COMMD1 is ubiquitously 
expressed and is involved in many cellular  
functions including sodium metabolism, regulation 
of NFκB, and HIF-1alpha-mediated transcription.57-68 
The common denominator in these processes is  
the fact that ubiquitylation of these proteins  
is mediated by COMMD1. Recent data indicate  
that COMMD1 plays a role in the functioning and  
stability of the human Wilson’s disease gene  
ATP7B,1 providing a clue to how COMMD1 absence 
leads to copper accumulation within hepatocytes.69 

A COMMD1-deficient dog presenting with copper 
storage disease resulting in chronic hepatitis,  
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provides an excellent model for clinical HPC 
transplantation trials in view of the requirement 
for a suitable animal model. It is genetically 
well-defined hepatitis and fibrosis progression 
that have been described in detail, and this 
metabolic disease resembles Wilson’s disease. 
Diseases in a more advanced stage including 
cirrhosis and ECM remodelling will be more 
challenging. These types of diseases will require 
a multi-modular strategy targeting hepatocyte 
regeneration, fibrosis resolution, and modulation  
of inflammation. Current developments in anti-
fibrotic therapies and the co-transplantation of 
mesenchymal stem cells (MSCs) or macrophages  
to modulate inflammatory responses are promising 
but are currently at the in vitro and rodent level.70,71 

CONCLUSION

There is much promise in the use of HPCs in 
regenerative therapies for human medicine. In 
dogs, important molecular and cellular reaction 
patterns in particular liver diseases are reported, 
and characterise HPCs and their niche. Overall,  
HPC marker expression in dogs is comparable to 
that of humans, as is response to injury and the  
cell types involved in modulating HPC response.  
This suggests that the therapeutic potential of  
these cells is similar in dogs when compared to 
man, and opens up the potential for developing  
new strategies for currently untreatable liver 
diseases, positioning dogs as potentially important 
animal models to progress from bench-to-bedside.

Yet, this might just be the beginning of the 
(re-)appreciation of dogs in regenerative and  
translational medicine. The discovery of the genetic 
background of hepatic copper accumulation 
in Bedlington Terriers is an example of simple 
Mendelian recessive inheritance. Complex human 
genetic disorders are much more difficult to 
investigate; cohorts of thousands of participants  
are needed here. For instance, the phenotypic 
variation in human Wilson’s disease patients  

and the genetic background of Endemic Tyrolean 
Infantile Cirrhosis (ETIC), Indian Childhood 
Cirrhosis (ICC), and idiopathic copper toxicosis  
are unexplained, partially due to low patient  
numbers and small pedigrees. Dogs have an ideal 
population structure for exploring the genetic 
basis of a variety of disorders, both Mendelian and 
complex.72 As a consequence of inbreeding, the 
genetic complexity of these diseases is reduced. 
Therefore, inbred dogs are a genetic magnifier, 
instrumental to discovering crucial and modifier 
genes involved in Mendelian and complex genetic 
diseases in humans.

Some examples of complex genetic liver disorders 
in dogs include copper-associated hepatitis in  
the Labrador Retriever, Dobermann, West Highland 
White Terrier, and Dalmatian.73-77 In these breeds 
a complex form of copper-associated hepatitis 
is present, where the susceptibility for copper 
is genetically determined and the expression of 
the disease phenotype (severity and/or time of 
onset) relies on environmental factors like dietary 
copper intake. Another example is congenital  
portosystemic shunting, which is a very rare 
disease in humans, but a much more frequently 
observed disease in several dog breeds such 
as Irish Wolfhounds, Labrador Retrievers, or 
Cairn Terriers.78-80 Identification of the genetic  
components involved in this disease will not  
only be useful for those patients suffering from  
a congenital portosystemic shunt but may  
have broad implications for hepatic angiogenesis  
in general.

The potential benefits of including dogs as 
an intermediate between rodent studies and 
human clinical practice does, in fact, close the 
liver transplantation cycle. It was in 1961 that 
Starzl and colleagues81 reported for the first 
time on liver transplantation in dogs; the field of 
liver transplantation benefited greatly from this  
landmark work by Starzl and colleagues.81 Dogs 
might also prove to be useful in the next 50  
years, and not just a dodgy intermediate.
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