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ABSTRACT

Osteoarthritis (OA) is a chronic disorder associated mainly with pain, limited range of motion, stiffness, joint 
inflammation, and articular cartilage (AC) destruction. Recent studies demonstrated the involvement of 
chondrocyte differentiation (hypertrophy) as one of the mechanisms of cartilage degradation in OA. This 
indicates the involvement of profound alterations in chondrocyte metabolism in the course of cartilage 
resorption orchestrated by principal changes in the regulation of cellular function. Mammalian target of 
rapamycin (mTOR) controls critical cellular processes such as growth, proliferation, and protein synthesis, 
and integrates extracellular signals from growth factors and hormones with amino acid availability and 
intracellular energy status. The importance of mTOR activity during AC destruction in OA is supported 
by considerable alterations in the mTOR regulatory network, involving multiple intracellular (availability of 
growth factors, adenosine triphosphate [ATP], and oxygen as well as autophagy) and extracellular (glucose, 
amino acid, lipid, and hexosamine) signals. Moreover, variable mTOR gene expression in the peripheral 
blood of OA patients is associated with increases in pain or synovitis, and indicates a profound metabolic 
dissimilarity among patients that might require differential approaches to treatment. These issues are 
discussed in the present review article.  

Keywords: Mammalian target of rapamycin (mTOR), osteoarthritis, articular cartilage, peripheral blood, 
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INTRODUCTION

Osteoarthritis (OA) is a systemic condition that 
can affect single or multiple joints, and involves 
degenerative changes in the articular cartilage 
(AC), remodelling of the subchondral bone, and 
limited synovial inflammation.1-4 The disability in 
OA is related to pain and reduced mobility due 
to AC degeneration. Recent evidence has been 
presented that disease manifestation is preceded  
by phenotypic modification (hypertrophy) of 
articular chondrocytes similar to that observed 
in foetal chondrocytes during their maturation in 
the epiphyseal growth plate.1,5-11 These phenotypic 
changes were associated with upregulation of 
genes involved in cartilage destruction, altered 

expression of apoptosis markers, regulatory  
growth, and transcription factors.7-14 However, 
subsequent inhibition of cartilage degradation 
by genetic abrogation of the local proteolysis  
of aggrecan and collagen in animal studies  
reduced pain, experimental disease severity, and 
subchondral bone changes, whereas osteophyte 
development was not affected.15,16 Moreover, 
clinical trials applying inhibitors of proteinases or 
inflammatory cytokines were also unsuccessful.17-21 
Therefore, identification of the upstream factors 
that regulate expression of catabolic molecules 
and/or chondrocyte hypertrophy in AC is important  
for a more profound understanding of the  
regulatory mechanisms that control articular 
chondrocyte function.22
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Previous studies have demonstrated that the  
majority of the identified genes involved in OA  
encode signal transduction proteins,23,24 and 
numerous signalling pathways have been shown 
to regulate chondrocyte activities.24-27 These signal 
transduction pathways are flexible and, therefore, 
potentially liable to intervention and modification.25 
As AC destruction in OA is associated with 
chondrocyte hypertrophy, signalling molecules 
- which regulate chondrocyte activities both in  
the growth plate and adult AC during OA - could  
be of particular interest.28 For example, it has 
been reported that ERK1/2 phosphorylation and 
suppression of p38 phosphorylation produce 
hypertrophic differentiation of AC chondrocytes.29,30 
At the same time, targeting specific signalling 
pathways in OA might not be easy due to the  
high variety and crosstalk among pathways.31 For 
example, direct targeting of beta-catenin might 
be risky because of its importance both in the 
maintenance of articular chondrocyte phenotype 
stability and cancer development.32

With this information in mind, tracking nutrient 
signalling pathways, which are thought to be 
linked to seven of the top ten causes of sickness 
and death including heart disease, obesity, 
several cancers, diabetes, and others, is more 
promising.33 Traditionally, nutrients such as amino 
acids, carbohydrates, and lipids were considered 
as substrates for the generation of high-energy 
molecules and biosynthetic precursors of 
macromolecules. However, at present, it is obvious 
that nutrients can function as signalling molecules  
in nutrient sensing signalling pathways, which 
regulate various aspects of energy metabolism and 
control cell growth, proliferation, and survival.34 

THE MTOR SIGNALLING PATHWAY 

In humans, gene expression is regulated by nutrients 
interacting with signalling pathways primarily 
involving mammalian target of rapamycin (mTOR), 
which integrates contributions from amino acids, 
growth factors, and molecules involved in the  
energy status of the cell.34-37 mTOR is a catalytic 
subunit of two different complexes including 
mTOR complex 1 (mTORC1) and mTOR complex 
2 (mTORC2). These complexes are distinguished 
through the binding of mTOR to accessory proteins. 
Raptor is a rapamycin (RAP)-sensitive regulatory 
protein associated with mTORC1. mTORC1 is 
regulated through actions on the tuberous sclerosis 
(TSC) 1/2 tumour suppressor protein complex. TSC1 

has no catalytic activity, whereas TSC2 functions  
as GTPase-activating protein that inhibits Ras 
homolog enriched in brain (Rheb). Inactivation of 
the TSC complex results in activation of mTOR38 
(Figure 1). It has been shown recently that mTORC1 
could also be activated by RAS-like GTPase RALB.39 
mTORC1 is in charge of the growth factor and 
nutrient responses, and therefore, critically regulates 
proliferation, metabolism, and cell survival. Rictor 
is a RAP-insensitive companion of mTORC2.40  

The activity of mTORC2 is associated with cell 
migration, glycogen metabolism, and possible 
regulation of gluconeogenesis.41 

MTOR REGULATION 

Chondrocyte Function in Foetal Development 

The mTOR signalling pathway is responsible for 
positive regulation of chondrocyte maturation, 
proliferation, cartilage matrix production, and cell 
growth during skeletal development.42-46 (Table 
1). RAP administered to young rats significantly 
reduced endochondral bone growth as evidenced 
by enlargement of the hypertrophic zone (due 
to decreased parathyroid hormone/parathyroid 
hormone-related peptide [PTH/PTHrP] expression 
and increased Indian hedgehog [Ihh] expression) 
and a decrease in chondrocyte proliferation 
associated with downregulation of mTOR. This was 
accompanied by a reduced number of tartrate-
resistant acid phosphatase (TRAP)-positive 
multinucleated chondro/osteoclasts and decreased 
expression of receptor activator of nuclear factor 
kappa-B ligand (RANKL), and vascular endothelial 
growth factor (VEGF).44 RAP also reduced insulin-
induced growth of foetal rat metatarsal explants  
due to a selective effect on the hypertrophic  
zone but not cell proliferation. In the ATDC5  
chondrogenic cell line, RAP inhibited proteoglycan 
(PG) accumulation, Type 10 collagen (COL10A1),  
and Ihh expression.47 In the case of nutrient  
starvation, stress, or reduced availability of growth 
factors, cellular metabolic adjustments involve 
inhibition of mTOR activity and induction of 
autophagy, which serves to promote cell survival. 
Autophagy was shown to affect foetal chondrocyte 
differentiation,48,49 as it developed in terminally 
differentiated chondrocytes, and permitted these 
cells to survive in the local microenvironment.50,51

Autophagy

During an autophagic state, the cell cannibalises 
itself to generate energy and/or to remove 
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defective organelles. When autophagy is 
extended, Type 2 apoptosis can be activated.52,53 In 
chondrocytes, autophagy is regulated by adenosine  
monophosphate (AMP)-activated protein kinase 
(AMPK) and mTOR activities in a hypoxia-inducible 
factor (HIF)-dependent manner.42,54,55 Increased 
autophagy was associated with mTOR inhibition 
upon cell growth cessation.56,57 Autophagy might 
be protective during cell stress conditions, as it is 
increased in normal chondrocytes under nutritional 
(1% foetal bovine serum [FBS]) or catabolic 
(interleukin-1 beta [IL-1β] or nitric oxide [NO]-
generating agent, sodium nitroprusside) stresses.58

Autophagy was observed in the superficial  
and mid-zones of AC in early animal OA,59 and in 
human normal and OA articular chondrocytes.42,60  

Increased autophagy was also noted in mild  

human OA AC versus normal and severely 
damaged specimens, and in cultured human OA  
chondrocytes when compared to normal.58  
However, some studies have also described  
a decreased autophagic response in mild and 
severe OA cartilage compared to normal cartilage  
in humans.60-62

Chondrocyte Function in Experimental OA

In mouse experimental OA upregulation of 
mTOR expression in the knee AC was associated 
with downregulation of autophagy61,63 (Table 1).  
Autophagy has been shown to be capable of 
ameliorating OA as its activation on mTOR 
inhibition by RAP or by mTOR deletion reduced 
disease severity in animal studies.61,63 This was 
accompanied by reduced cartilage degradation, 

Figure 1: mTOR regulatory network in chondrocyte.
mTOR: mammalian target of rapamycin; Gluts: glucose transporters; REDD: regulated in development and 
DNA damage responses; TSC1/2: tuberous sclerosis 1/2 tumour suppressor protein complex; Rheb: Ras 
homolog enriched in brain; AMPK: AMP-activated protein kinase; AMP: adenosine monophosphate; ATP: 
adenosine triphosphate; TCA: tricarbonic acid cycle; HIF1α: hypoxia inducible factor 1α; 4E-BP: eukaryotic 
translation initiation factor 4E binding protein; 6SK: ribosomal protein S6 kinase; n-3PUFAs: omega 3 
polyunsaturated fatty acids.
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decreased A Disintegrin, and Metalloproteinase 
with Thrombospondin Motifs (ADAMTS)-5, matrix 
metalloproteinase (MMP)-13, IL-1β expression,  
and synovitis.63 Moreover, activation of autophagy 
on mTOR gene deletion was associated with  
a reduction of PG loss, synovial fibrosis, 
transforming growth factor beta/Mothers against  
decapentaplegic homolog 3 (TGF-β/SMAD3) 
signalling, MMP-13, MMP-induced Type 2 collagen 
degradation, and apoptosis.61

Chondrocyte Function in Human AC

At present, some studies also indicate the 
importance of mTOR signalling in articular 
chondrocyte metabolism, extracellular matrix  
(ECM) maintenance, and OA development, as  
mTOR expression has been reported in human  
normal and OA articular cartilage.61,62,64 mTOR 
upregulation in end-stage OA articular cartilage 
was associated with downregulation of autophagy, 
cyclin-dependent kinase inhibitors, and  
upregulation of regulators of cell death and 
apoptosis, increased expression of chondrocyte 
hypertrophy-related COL10A1, and ECM degrading 
MMP-9 and MMP-1361,62 (Table 1). The value of 
mTOR signalling in chondrocyte biology is 
further supported by studies on the role of  
mTOR regulators in AC function, as being a major 
regulator of various cellular processes it is itself a  
target of regulation.

Functions of Positive mTOR Regulators in 
Chondrocytes

Nutrients such as amino acids and glucose act 
through mTOR and directly affect chondrocyte 
differentiation and long bone growth.43,47            

Amino acids

Essential amino acids are considered a limiting 
factor as they are required as substrates for 
protein synthesis and also act as signalling 
molecules in several regulatory pathways. Leucine 
is the most potent regulator of mTOR signalling.65  
The chondroprotective and anti-inflammatory  
effects of a herbal leucine mix have been  
demonstrated by a strong inhibition of inducible  
nitric oxide synthase (iNOS), MMP-9 and  
MMP-13, NO-production, glycosaminoglycan (GAG) 
release, and upregulation of COL2A1 expression  
in human OA chondrocytes and cartilage 
explants stimulated by IL-1β.66 In contrast,  
leucine restriction produced a dose-dependent 
inhibition of foetal rat metatarsal explant  

growth. This was accompanied by reduced cell  
proliferation and hypertrophy, and partial inhibition 
of mTOR activity. In chondrogenic ATDC5  
cells, leucine restriction inhibited cell numbers  
and PG accumulation as well as COL10A1 and  
Ihh expression.43  

Glucose

Glucose regulates mTOR by several mechanisms 
including inhibition of mTOR during glucose  
limitation due to a decreased ATP/AMP ratio 
and a concomitant AMPK activation,67 and by 
a glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH)-dependent inhibition of Rheb.68 mTOR 
might be an important player in chondrocyte  
glucose metabolism as it is subject to regulation  
by glucose.

As AC is an avascular non-insulin-sensitive tissue, 
it utilises glucose as a main energy source, a 
precursor for GAG synthesis, and a regulator 
of gene expression.69 In a hypoxic milieu of  
AC, anaerobic glycolysis is considered a  
central element in generating ATP to support 
ECM synthesis and chondrocyte viability, 
while mitochondrial oxidative phosphorylation 
(OXPHOS) serves as a physiologic reserve for ATP  
production70 and a source of oxidants generated 
in mitochondrial electron transport chain (ETC) 
to maintain cellular redox balance in favour of 
glycolysis.71 The importance of glycolysis in AC  
PG synthesis has been confirmed by enhanced 
inhibition of this process by a glycolysis inhibitor 
compared to an OXPHOS uncoupler. Moreover, 
oxidation of GAPDH by hydrogen peroxide resulted 
in inhibition of PG core protein synthesis in vitro  
and in an animal model of acute arthritis.72

Glycolysis is regulated by glucose transporter  
(GLUT) expression via cytokines. Both anabolic 
(TGF-β1) and catabolic (IL-1β) factors have been 
shown to be equally capable of accelerating  
glucose transport in normal human cultured 
chondrocytes. However, TGF-β1-stimulated glucose 
transport was not associated with increased 
expression of GLUTs (1, 3, 6, 8, 10), and involved 
protein kinase C (PKC) and extracellular signal-
regulated kinase (ERK) activation. However,  
in a study of IL-1β-stimulation, glucose transport  
was accompanied by increased expression  
of GLUT1 and 6, dependent on PKC and p38  
mitogen-activated protein (MAP) kinase, and 
produced higher levels of lactate indicating  
glycolysis activation.69
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Table 1: Effects of mTOR signalling on chondrocyte function.

Condition or 
treatment

mTOR response Tissue/cell response Tissue, animal or cell 
type

Ref

Human OA disease Upregulation Decreased expression of autophagy 
marker ULK1,  CDKN1A (p21), 
increased expression of Type X 
collagen, MMP-13, and MMP-9

Human end-stage 
knee articular 
cartilage

62

Human OA disease Upregulation Downregulation of 20 autophagy related 
genes including ULK1, LC3B, Beclin 1, 
ATG-3, -5, -13, GABARAPL1, and also 
BNIP3, CDKN1B (p27), FAS, HSP90AA1, 
and HSPA8. Upregulation of 5 autophagy 
related genes and cell death/apoptosis 
regulators APP, CTSB, BCL2, and BAD

Human end-stage knee 
articular cartilage

61

Surgical OA in  
animals 

Upregulation Downregulation of autophagy markers LC3 
and ATG5

Dog and mouse knee 
articular cartilage  

61

Inducible  cartilage-
specific mTOR 
knock-out mice

Downregulation Increased expression of ULK1, AMPK1, 
ATG5, BNIP3, and LC3, protection 
from cartilage degradation, reduction 
of proteoglycan loss and articular 
chondrocyte cellularity, reduction of 
synovial fibrosis, TGF-β/SMAD3 signalling, 
MMP-13, and MMP-induced Type 2 collagen 
degradation, and apoptosis

Knee articular cartilage 61

RAP treated 
animals

Downregulation Reduced severity of cartilage degradation,  
decrease in synovitis, expression  of 
ADAMTS5 and IL-1β, and activation of 
autophagy marker LC3

Mouse experimental OA 
articular cartilage

63

Increase in the 
endogenous n-3 
PUFAs

Downregulation Decreased cartilage destruction and 
osteophytosis, downregulated MMP-
13 and ADAMTS5 expression, reduced 
chondrocyte loss and ECM degradation, 
and increased autophagy 

Fat-1 transgenic mice 
articular cartilage

116

Artificially induced  
temporomandibular 
condylar cartilage 
degeneration

Downregulation Increased expression of autophagy markers 
Beclin 1 and LC3, and reduced MAPK4K3 
activity

Cartilage of rat 
temporomandibular 
joint

57

RAP treated 
mechanically 
injured cartilage

Downregulation Enhanced expression of autophagy markers 
ULK1, Beclin 1, and LC3, cell viability, and 
decreased sulfated glycosaminoglycan loss 

Human and bovine 
articular cartilage 
explants

125

RAP treated cells Downregulation Reduction of proteoglycan accumulation, 
Type 10 collagen and Ihh expression

ATDC5 chondrogenic 
cell line

47

mTOR silenced by 
siRNA in cells

Downregulation Increased autophagy marker LC3 
expression, less association of BCL2 with 
Beclin 1  

Mouse chondrocytes 42

RAP treated cells Downregulation Increased autophagy marker LC3 
expression

Mouse chondrocytes 42

RAP treated cells Downregulation Decrease of IGF-1-stimulated proteoglycan 
synthesis 

Normal human articular 
chondrocytes 

77

Glucosamine 
treated cells

Downregulation Increased autophagy marker LC3 
expression 

Normal human articular 
chondrocytes

93

Leucine restriction Partial 
downregulation

Inhibition of metatarsal bone growth, 
reduction of proliferation and hypertrophy

Foetal rat metatarsal 
explants

43

Leucine restriction Partial 
downregulation

Inhibition of cell numbers, proteoglycan 
accumulation, Type 10 collagen and Ihh 
expression

ATDC5 chondrogenic 
cell line

43
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Glycolysis inhibition by sodium fluoride 
(NaF) induced a dose-dependent decrease 
in ATP production, inhibition of chondrocyte  
proliferation and differentiation, and cell 
death promotion in a human chondrocytic cell 
line. Moreover, chondrocyte treatment by a  
combination of NaF and lactate upregulated 
the expression of several genes associated with 
chondrocyte hypertrophy, including alkaline 
phosphatase (ALP), VEGF, COL10A1, and MMP-13 

and MMP-9.73 Altered glycolysis function has also  
been shown to be involved in OA. For example,  
development of spontaneous OA in guinea pigs 
was associated with depletion of knee chondrocyte 
intracellular ATP by 50% despite a lack of  
mitochondrial ultrastructure abnormalities and 
the presence of an adaptive augmentation of  
glycolysis indicated by an increased ratio of lactate  
to pyruvate.70

mTOR: mammalian target of rapamycin; OA: osteoarthritis; MMP: matrix metalloproteinase; TGF-β: 
transforming growth factor beta; ADAMTS-5: A Disintegrin and Metalloproteinase with Thrombospondin 
Motifts-5; IL-1β: interleukin-1 beta; PUFAs: n-3 polyunsaturated fatty acids; ECM: extracellular matrix; RAP: 
rapamycin; IGF-1: insulin-like growth factor 1; PTH/PTHrP: parathyroid hormone/parathyroid hormone 
related peptide; RANKL: receptor activator of nuclear factor kappa-B ligand; VEGF: vascular endothelial 
growth factor; TRAP: tartrate resistant acid phosphatase; AMPK: AMP-activated protein kinase; siRNA: 
small interfering RNA; PDK1: pyruvate dehydrogenase kinase-1; PI3K: phosphoinositide 3 kinase; MAP4K3: 
mitogen-activated kinase kinase kinase kinase 3. 

Condition or 
treatment

mTOR response Tissue/cell response Tissue, animal or cell 
type

Ref

RAP treated cells 
stimulated by IL-1β

Downregulation Enhanced lysosomal activity, increased 
expression of autophagy markers Beclin 
1 and LC3, COL2A1, aggrecan, reduced 
expression of MMP-13 and ADAMTS5

Normal human articular 
chondrocytes

58

RAP treated cells Downregulation Increased autophagy markers LC3 
and ULK1; AMPK1, Type 2 collagen and 
aggrecan expression, decreased MMP-
13, CCL5/RANTES, and CCL2/MCP-1 
expression

Human OA 
chondrocytes

61

IL-1β-treated cells Upregulation Increased expression of MMP-13, CCL2, 
and CCL5; decreased expression of Type 2 
collagen 

Human OA 
chondrocytes

61

Pten-deficient mice Upregulation Accelerated hypertrophic differentiation, 
increased expression of Type 10 collagen, 
alkaline phosphatase, PDK1, and PI3K 
signalling

Mouse long bone 
growth plate

126

RAP treated 
animals 

Downregulation Reduction of body and tibia growth, 
decrease in chondrocyte proliferation, 
enlargement of growth plate hypertrophic 
zone, increase in Ihh and reduction in PTH/
PTHrP, RANKL, VEGF expression, and 
decline in TRAP-positive multinucleated 
cells

Weanling rat growth 
plate 

44

RAP treated 
explants

Downregulation Decreased insulin-induced bone growth 
stimulation

Foetal rat metatarsal 
explants

47

Endochondral 
ossification: 
proliferative zone

Upregulation Inhibition of autophagy Proliferative growth 
plate chondrocytes

48,
50

Endochondral 
ossification: 
hypertrophic zone

Downregulation Increase in autophagy and AMPK activity Terminally 
differentiated  growth 
plate chondrocytes

48,
50

Table 1 continued.
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However, proteomic studies in human OA 
chondrocytes revealed decreased concentrations 
of proteins involved in glycolysis (enolase,  
GAPDH, and fructose bisphosphate aldolase).74 
Moreover, a GAPDH inhibitor, monosodium 
acetate, caused chondrocyte apoptosis evidenced 
by upregulation of cytochrome-oxidase C and  
caspase-3 protein levels and reactive oxygen 
species (ROS) production.75 In addition, a significant 
reduction in GLUT1 mRNA observed in clinical  
OA cartilage samples resulted in failure of OA 
cartilage repair.76

Growth factors

Growth factors, primarily insulin-like growth 
factor 1 (IGF-1), are known to be mTOR positive  
regulators in many tissues. In AC, growth factor-
related ECM maintenance has also been shown to 
be mediated by mTOR. Accordingly, a decrease in  
IGF-1-stimulated PG synthesis in cultured normal 
human articular chondrocytes was observed upon 
inhibition of mTOR.77

Functions of Negative mTOR Regulators in 
Chondrocytes

AMPK

AMPK is a heterotrimeric serine-threonine kinase, 
which is activated when intracellular energy  
is limiting. It stimulates ATP catabolism and  
inhibits its synthetic activity.78 In mammals, AMPK 
activates the TSC2-TSC1 complex, thus inhibiting 
mTOR.79 AMPK regulates energy homeostasis 
and cellular metabolism, and also exerts anti-
inflammatory effects in multiple tissues. 

AMPK activity also supports AC homeostasis, 
as it is constitutively present in normal articular 
chondrocytes and cartilage but decreased in OA 
articular chondrocytes and cartilage as well as in 
normal chondrocytes treated with IL-1β or tumour 
necrosis factor alpha (TNFα). Attenuation of 
AMPK resulted in enhanced catabolic responses to  
IL-1β and TNFα in human and mouse chondrocytes,  
and was associated with increased MMP-3 and  
MMP-13 release. Moreover, AMPK activators 
suppressed cartilage/chondrocyte procatabolic 
responses to IL-1β and TNFα, and the capacity of 
TNFα and IL-8 to induce COL10A1 expression.80-82           

Hypoxia

Hypoxia regulates mTOR via REDD (regulated 
in development and DNA damage response)  

1/2 proteins. REDD1 inhibition of mTOR is  
mediated by the TSC1/2 complex.83 A hypoxic 
environment is optimal and protective for AC  
as chondrocyte exposure to hypoxia inhibited 
caspase-8 and the generation of ROS, which  
were induced in primary articular chondrocytes  
co-treated with the proteasome inhibitor and  
apoptosis stimulator, TNF-related apoptosis  
inducing ligand (TRAIL), under normoxic 
conditions.84 In the presence of an optimal 
(5%) oxygen concentration for porcine articular 
chondrocytes, maximum ATP generation and  
the highest protection against IL-1β  and NO 
stimulation were observed. However, in the  
presence of 20% or 1% oxygen, reduced ATP 
levels and increased AMPK expression were 
demonstrated.85,86 Moreover, hypoxia stimulation 
induced by cobalt chloride (a hypoxia mimetic) 
increased glucose uptake and lactate production, 
and upregulated GLUT1 mRNA expression in  
primary articular chondrocytes.76,87

HIF transcription factors represent a central  
control mechanism of oxygen sensing.88 HIF  
activity is important in both foetal and adult AC.  
For example, HIF-1α is expressed in the central 
part of the growth plate,89 and its inactivation  
in foetal chondrocytes dramatically inhibits  
anaerobic energy generation and ECM synthesis.90 
In adult AC, HIF-1α was detected both in normal 
and OA chondrocytes while an increase in HIF-1α 
expression was associated with disease severity  
in OA cartilage.90 Moreover, HIF-1α was suggested  
to be involved in cartilage repair, as hyaline-like  
matrix synthesis was increased upon HIF-
1α overexpression in the presence of IGF-1 or  
BMP-2 in the periosteal cells from animal chondral 
knee lesions.91    

Hexosamine pathway

The hexosamine signalling pathway is an 
additional glucose sensor and is responsible  
for glucose redistribution either for ATP  
production or conservation in lipids and/or  
glycogen. This pathway may be involved in leptin  
and adiponectin synthesis, which are capable of 
activating AMPK and inhibiting mTOR function.34 
Another mechanism for the involvement of  
the hexosamine pathway in mTOR inhibition was  
observed in normal articular chondrocytes, where 
glucosamine activated autophagy and inhibited 
glucose uptake in a manner consistent with the 
actions of a competitive inhibitor.92,93  
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Glucosamine is an amino sugar widely used 
to relieve symptoms associated with OA likely 
because chondrocytes utilise this sugar as a 
structural component for ECM (glycosaminoglycan) 
synthesis.94 Glucosamine has been shown  
to decrease both foetal and articular chondrocyte 
proliferation, differentiation, and mineralisation95,96 
due to downregulation of catabolic MMPs, 
aggrecanases, pro-inflammatory mediators, and  
the induction of pro-anabolic hyaluronic acid  
in vitro.97-99

Some clinical studies reported a decrease in 
pain and reduction of knee joint space loss  
after glucosamine treatment.100 These could be 
associated with the induction of tissue TGF-β1  
and connective tissue growth factor (CTGF)  
expression, as well as reduction of cartilage  
oligomeric matrix protein, an AC degradation 
marker.101,102 However, the majority of clinical trials 
have reported numerous non-responders or the 
absence of this effect when compared with non- 
pharmacological treatment methods, such as 
exercise or weight loss.103-105

Lipids

Obesity is one of the main risk factors for OA. 
Activated white adipose tissue increases synthesis 
of proinflammatory cytokines while adipokines 
are capable of promoting synovial inflammation, 
upregulation of cartilage degrading enzymes, and  
bone matrix remodelling.106,107 For example, 
adiponectin induced an increase in MMPs and 
collagen degradation activity in OA cartilage or 
cultured human chondrocytes, which was mediated 
by an mTOR inhibitor, AMPK.108-110  

Altered lipid metabolism associated with OA 
involved increased cellular phospholipid and  
lipid deposition in the joint111-113 and distorted 
cholesterol and fatty acid metabolism in OA 
chondrocytes.113-115 It has been shown recently 
that n-3 polyunsaturated fatty acids (PUFAs)  
supplement significantly alleviated AC destruction 
and decreased MMP-13 and ADAMTS5 expression 
in an animal model of OA. Both exogenous and 
endogenous n-3 PUFAs downregulated mTORC1 
activity and promoted autophagy in articular 
chondrocytes. Moreover, enhancement in synthesis 
of endogenous n-3 PUFAs from n-6 PUFAs was 
shown to be capable of delaying the incidence  
of OA.116

MTOR AS A MARKER OF SYSTEMIC OA 
MANIFESTATIONS

The data described above demonstrate the 
importance of mTOR signalling in chondrocytes  
both in normal and OA cartilage. However,  
systemic OA manifestations require additional 
studies focusing on tissues outside of the AC 
which play a role in OA.117 Alterations in non- 
tissue-specific regulatory protein expression 
associated with disease manifestation may  
suggest differential gene expression in tissues other 
than cartilage. This is supported by the observation  
of modified expression of genes associated with 
foetal chondrocyte differentiation, such as bone 
morphogenetic proteins 2, 4, and 6, as well as 
runt-related transcription factor 2 (RUNX2), in the 
peripheral blood of OA patients.118

Assessment of gene expression changes  
measured in the whole blood is an emerging 
approach in OA research. Blood-based 
transcriptome and microarray gene expression 
analyses appeared capable of distinguishing  
OA patients from control subjects.119,120 Moreover, 
upregulation of IL-1β gene expression in the blood 
was accompanied by increased pain and predicted 
a higher risk of radiographic progression of the 
disease,121 while high expression of TNFα was 
associated with high mTOR expression and a higher 
incidence of synovitis.62  

Upregulation of mTOR gene expression in the 
PBMCs might occur concomitantly with increased 
AC destruction as a positive correlation between 
mTOR gene expression in the blood and AC was 
noted in end-stage OA patients.62 In addition, 
elevated mTOR gene expression was observed 
in both peripheral blood and AC of end-stage OA  
patients.62 At the same time, excessive inhibition 
of mTOR expression is also deleterious as it 
might result in significantly more pain upon joint  
function,62 which might be associated with the  
ERK pathway activation in sensory neurons.122  
Considering this information, although treatment 
of mice by mTOR inhibitors has been shown to be 
capable of reducing the severity of experimental 
OA60,63 and inflammatory arthritis,64,123 and is 
suggested for treatment of human OA,124 mTOR 
inhibition in OA patients should be considered  
with caution. 



 RHEUMATOLOGY  •  July 2014   EMJ  EUROPEAN MEDICAL JOURNAL  RHEUMATOLOGY  •  July 2014  EMJ  EUROPEAN MEDICAL JOURNAL 92 93

1. Poole AR et al, “Etiopathogenesis of 
Osteoarthritis,” Moskowitz RW et al. 
(eds.), Osteoarthritis: Diagnosis and 
Medical/Surgical Management (2007), 
4th edition, Philadelphia: Williams and 
Wilkins, pp. 27–49. 
2. Lotz M, Loeser RF. Effects of aging on 
articular cartilage homeostasis. Bone. 
2012;51(2):241-8.
3. Scanzello CR, Goldring SR. The role of 
synovitis in osteoarthritis pathogenesis. 
Bone. 2012;51(2):249-57.
4. Loeser RF et al. Osteoarthritis: a disease 
of the joint as an organ. Arthritis Rheum. 
2012;64(6):1697-707.
5. Tchetina EV. Developmental 
mechanisms in articular cartilage 
degradation in osteoarthritis. Arthritis. 
2011;2011:683970. 
6. Studer D et al. Molecular and biophysical 
mechanisms regulating hypertrophic 
differentiation in chondrocytes and 
mesenchymal stem cells. Eur Cell Mater. 
2012;24:118-35.
7. Aigner T, Gerwin N. Growth plate 
cartilage as developmental model 
in osteoarthritis research-potentials 
and limitations. Curr Drug Targets. 
2007;8(2):377-85.
8. van der Kraan PM, van den Berg 
WB. Chondrocyte hypertrophy and 
osteoarthritis: role in initiation and 
progression of cartilage degeneration? 
Osteoarthritis Cartilage. 2012;20(3): 
223-32.
9. Zuscik MJ et al. 5-azacytidine alters 
TGF-beta and BMP signaling and induces 
maturation in articular chondrocytes. J 
Cell Biochem. 2004;92(2):316-31.
10. van der Kraan PM. Understanding 

developmental mechanisms in the 
context of osteoarthritis. Curr Rheumatol 
Rep. 2013;15(6):333. 
11. Sun MM, Beier F. Chondrocyte 
hypertrophy in skeletal development, 
growth, and disease. Birth Defects Res C 
Embryo Today. 2014;102(1):74-82.
12. Tchetina EV et al. Increased type II 
collagen degradation and very early 
focal cartilage degeneration is associated 
with upregulation of chondrocyte 
differentiation related genes in early 
human articular cartilage lesions. J 
Rheumatol. 2005;32(5):876-86.
 13. Tchetina EV et al. Chondrocyte 
hypertrophy can be induced by a cryptic 
sequence of type II collagen and is 
accompanied by the induction of MMP-
13 and collagenase activity: implications 
for development and arthritis. Matrix Biol. 
2007;26(4):247-58.
14. Tchetina EV et al. Transforming 
growth factor-beta2 suppresses collagen 
cleavage in cultured human osteoarthritic 
cartilage, reduces expression of genes 
associated with chondrocyte hypertrophy 
and degradation, and increases 
prostaglandin E(2) production. Am J 
Path. 2006;168(1):131-40.
15. Glasson SS. In vivo osteoarthritis target 
validation utilizing genetically-modified 
mice. Curr Drug Targets. 2007;8(2): 
367-76.
16. Little CB, Fosang AJ. Is cartilage 
matrix breakdown an appropriate 
therapeutic target in osteoarthritis--
insights from studies of aggrecan and 
collagen proteolysis? Curr Drug Targets. 
2010;11(5):561-75.
17. Botter SM et al. ADAMTS5-/- mice 

have less subchondral bone changes 
after induction of osteoarthritis through 
surgical instability: implications for a 
link between cartilage and subchondral 
bone changes. Osteoarthritis Cartilage. 
2009;17(5):636-45. 
18. Bondeson J. Are we moving in the 
right direction with osteoarthritis drug 
discovery? Expert Opin Ther Targets. 
2011;15(12):1355-68.
19. Chevalier X et al. Targeted anti-
cytokine therapies for osteoarthritis. Bull 
Acad Natl Med. 2006;190(7):1411-20.
20. Gonzalo-Gil E et al. Transforming 
growth factor (TGF)-β signalling is 
increased in rheumatoid synovium 
but TGF-β blockade does not modify 
experimental arthritis. Clin Exp Immunol. 
2013;174(2):245-55. 
21. Kapoor M et al. Role of proinflammatory 
cytokines in the pathophysiology of 
osteoarthritis. Nat Rev Rheumatol. 
2011;7(1):33-42.
22. Schroeppel JP et al. Molecular 
regulation of articular chondrocyte 
function and its significance in 
osteoarthritis. Histol Histopathol. 
2011;26(3):377-94. 
23. Rousseau JC, Delmas PD. Biological 
markers in osteoarthritis. Nat Clin Pract 
Rheumatol. 2007;3(6):346-56. 
24. Wu L et al. Insights on biology and 
pathology of HIF-1α/-2α, TGFβ/BMP, 
Wnt/β-Catenin, and NF-κB pathways 
in osteoarthritis. Curr Pharm Des. 
2012;18(22):3293-312.
25. Scanzello CR et al. Innate immune 
system activation in osteoarthritis: is 
osteoarthritis a chronic wound? Curr Opin 
Rheumatol. 2008;20(5):565-72. 

Acknowledgements

The study was supported by Russian Foundation for Basic Research (project no. 12-04-00038a).

CONCLUSION

The importance of mTOR regulation in chondrocyte 
biology and altered activity of positive and  
negative regulators of mTOR signalling pathway 
associated with OA suggest its involvement in 
the disease onset, progression, and outcome. 
However, the majority of studies on mTOR  
signalling associated with OA were performed  
using animal models and cultured chondrocytes.  
The results gained in these conditions do not  
necessary imply that exactly the same processes  

are involved in human OA. Therefore, clinical 
studies are warranted in order to truly identify the  
role of mTOR signalling in OA. As mTOR regulation 
involves both environmental nutrient signalling and  
is capable of modulating chondrocyte energy  
turnover, cell growth, proliferation, and survival,  
further detailed studies of mTOR signalling in 
OA patients might provide opportunities for 
the identification of new targets for therapeutic 
intervention, which could lead to secure and  
efficient therapies that reduce the symptoms and 
slow the progression of OA. 
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