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ABSTRACT

The vagus nerve, the major nerve of the parasympathetic nervous system, innervates several organs  
from the neck to the abdomen. The vagal branches contain afferent (i.e. sensory) and efferent  
(i.e. motor) fibres contributing to a bidirectional communication between the visceral organs and the  
brain. The extensive vagal innervation of the body indicates that vagus nerve has a multitude of  
physiological functions. Specifically, the gastrointestinal (GI) tract is densely innervated by the vagus 
nerve and the latter plays a crucial role in GI functions such as food intake, digestion, and GI barrier 
function. In addition, the vagus nerve has immunomodulatory properties suggesting that activation of  
the parasympathetic innervation of the GI tract could act as a new therapeutic tool to treat intestinal  
immune diseases. This review summarises the anatomical and physiological properties of the vagal 
innervation of the GI tract.
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TOPOGRAPHICAL ANATOMY OF THE 
VAGUS NERVE 

The vagus nerve, the main contributor of the 
parasympathetic nervous system, is the tenth  
cranial nerve originating from the medulla  
oblongata in the central nervous system.  
Within the medulla, the cell bodies of vagal 
preganglionic neurons are found in the nucleus 
ambiguous (NA) and the dorsal motor of the  
vagus (DMV). These nuclei supply fibres to the 
vagus nerve, which emerges from the cranium via 
the jugular foramen.1 At the level of the jugular 
foramen, the superior jugular ganglion of the  
vagus provides cutaneous branches to the  
auriculus and external acoustic meatus.2,3 Just 
distally, there is a second ganglion, referred to  
as the nodose ganglion, collecting sensory 
innervation from visceral organs. The cell bodies  
of afferent (i.e. sensory) neurons are located in the 

latter ganglion and project to the nucleus of the 
solitary tract (NTS). This nucleus relays input to 
the medulla in order to regulate the cardiovascular, 
respiratory and gastrointestinal (GI) functions.4

The cervical vagus descends within the carotid  
sheath alongside the carotid artery and internal 
jugular vein. Cardiac vagal branches leave the  
cervical vagus and join the cardiac plexus. The left 
and right recurrent laryngeal nerve, arising at the  
level of the aortic arch and subclavian artery 
respectively, also contribute to the cardiac 
innervation. Besides the heart, both vagi innervate 
the lungs through the pulmonary plexus.1 

INNERVATION OF THE GI TRACT 

More distally, the left and right vagus run with the 
oesophagus through the diaphragmatic hiatus.  
Upon entering the abdominal cavity, the left and 
right vagus become the anterior and posterior  
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vagus, respectively.1,5,6 However, one has to keep 
in mind that each trunk receives fibres from  
both cervical vagus nerves.5 The number of 
posterior and anterior trunks passing through the 
diaphragmatic opening is variable, up to two in  
the former and three in the latter.5 The anterior  
trunk distributes gastric branches to the anterior 
aspect of the stomach and gives off a hepatic  
branch. Besides innervating the liver, the hepatic 
stem gives off branches to the pylorus and the 
proximal part of the duodenum and pancreas.  
On the other hand, the posterior trunk distributes 
one gastric branch to the proximal posterior  
aspect of the stomach and another to the coeliac 
plexus, which innervates the spleen and GI tract 
reaching as far as the left colonic flexure.1,5,6 The 
large intestine receives additional parasympathetic 
innervation through the pelvic splanchnic nerve 
(S2-S4), which terminates in the pelvic plexus and 
emerges as the colonic and rectal nerve.7-10

The afferent vagus nerve innervates the GI tract  
via vagal terminals both in the lamina propria11,12  
and in the muscularis externa.13-15 However, the  
efferent vagus nerve fibres only interact with  
neurons of the enteric nervous system (ENS). The 
ENS consists out of a dense meshwork of nerve 
fibres, situated in the submucosal (i.e. submucosal 
plexus) and external muscular compartment of 
the intestine (i.e. myenteric plexus).16 By means 
of electrophysiological and anterograde tracer 
studies, it was demonstrated that preganglionic 
parasympathetic fibres (i.e. both vagal and 
sacral innervation) directly interact with multiple 
postganglionic myenteric neurons by formation  
of varicosities, whereas few vagal fibres  
communicate with submucosal neurons.17-20 The 
preganglionic innervation of the GI tract displays  
a typical rostro-caudal gradient with the highest 
density of innervated myenteric neurons in the  
stomach and duodenum followed by a progressive 
reduction in the small intestine and colon.17 
The fact that gastric myenteric neurons are 
activated by vagal input was also demonstrated 
immunohistochemically with the detection of  
c-Fos and phosphorylated c-AMP response  
element binding protein (p-CREB), which are  
markers for neuronal activity.21,22 As activation of 
neurons within one ganglion is initiated after the  
same latency period, Schemann et al.20  
suggest that the vagal input to the ENS is 
monosynaptic. However, this is not confirmed  
by other studies.22 Currently, three distinct  
vagal afferent terminals have been described.  

The specific location of each terminal has  
correlations with its physiological function. 

VAGAL REGULATION OF GI PHYSIOLOGY 

Vagal fibres are projected throughout the GI  
tract and interact with the gut to regulate  
food intake, digestion, barrier keeping, and 
immunity. Food intake leads to satiety through  
the activation of several pathways: the release  
of various peptides from enteroendocrine cells  
(EEC), the direct action of certain nutrients  
(e.g. short fatty acids23) (Figure 1A), and 
mechanoreceptor stimulation due to gastric 
distension (Figure 1B).24 Most afferent vagal  
endings in the mucosal lamina propria are thought 
to be chemoreceptors sensing the presence 
of hormones, peptides and nutrients released 
by epithelial and neuroendocrine cells.23,25-27 In  
contrast, the terminal vagal structures in the 
external muscle layers and the myenteric plexus  
are considered to be mechanoreceptors detecting  
GI distension.13,14 These sensory signals are relayed 
to the NTS, in which the afferent information is 
processed. Appropriate vagal efferent output is 
transmitted from the DMV.12 The latter has a major 
metabolic and dietary function, since electrical 
stimulation of DMV leads to an increased secretion 
of gastric acid,28,29 insulin28,30 and glucagon.28,31 

Moreover, the secretion of gastric acid,32 insulin,32-38 
glucagon,35-37 and pancreatic polypeptide39,40 is 
also elevated when the peripheral vagus nerve 
is stimulated (Figure 1). These responses are 
all abolished by vagotomy,41 administration of 
atropine,35,40,42 or hexamethonium.31,40 Besides 
its dietary and metabolic functions, the vagus  
nerve also has effects on the intestinal barrier  
function through immune cells (i.e. mast cells43) and 
the activation of enteric glial cells via the ENS.

Dietary Intake and Metabolism Regulation 

Chemical stimulation 

The EECs respond to nutrient sensing in the 
lumen by the basolateral secretion of leptin in the  
stomach44 and cholecystokinin (CCK) in the small 
intestine.45 Tracer studies showed that EECs lie in 
close vicinity to mucosal vagal afferent terminals 
projecting from the nodose ganglia via the  
myenteric plexus.11,46 The close anatomical  
position between vagal afferents and EECs enables  
CCK and leptin to act as paracrine factors, 
which activate CCK-A26 and Ob-R receptors25,27 
expressed on afferent fibres, respectively.11  
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Electrophysiological studies have confirmed 
these anatomical observations, since CCK 
stimulates afferent nerve fibres47 and nodose 
ganglion cell bodies48 via the CCK-A receptor.  
Leptin has also been reported to act in synergism 
with CCK through CCK-A receptors and afferent 

vagal fibres.27,49 This afferent signalling is  
further relayed to the NTS.49-51 Synergistic vagal 
activation by CCK and leptin leads to inhibition  
of food intake.49,52,53 In addition, CCK alone  
inhibits gastric emptying54-56 and stimulates  
biliary and pancreatic secretion (Figure 1).57-59  

Figure 1. Vagal regulation of gastrointestinal (GI) physiology. 
(A) Afferent vagal fibres receive information from the internal milieu of the GI tract via mechanical  
signalling and chemical (i.e. enteroendocrine hormone release and certain food nutrients) and  
immunological stimulation (i.e. proinflammatory cytokines). 
(B) This sensory information is transmitted to the nucleus of the solitary tract (NTS) to mount an  
appropriate efferent (i.e. motor) response through the dorsal motor nucleus of the vagus (DMV),  
such as the secretion of neuroendocrine hormones and variations in GI motility, barrier function, and 
modulation of the intestinal immune response. 
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Indeed, the administration of specific CCK-A 
receptors antagonists (i.e. L364,718) prior to a  
meal increases food ingestion54,60 and gastric 
emptying, but inhibits pancreatic secretion.57,61,62 
These effects of CCK are dependent on an  
intact vagal supply, since vagotomy58,63,64 or 
destruction of small diameter vagal afferent C  
fibres by capsaicin abolish the actions of CCK.54-56,58

Mechanical stimulation

Besides chemosensory signal transduction, the 
afferent arch of the vagus is also activated by  
gastric distension through the stimulation of 
afferent vagal mechanoreceptor in the GI tract.  
Two candidate mechanoreceptors of the vagus  
nerve have been described: the intraganglionic 
laminar ending (IGLE)13 and intramuscular  
arrays (IMAs).14

The former terminal consists of aggregates 
of terminal puncta associated with myenteric  
neurons as well as connective tissue structures 
surrounding the myenteric ganglia. IGLEs are the 
densest in the stomach and become sparse more 
caudally.14,65-67 The close anatomical proximity 
between the connective tissue layers and the 
ganglia indicates that IGLEs are able to detect  
the shearing forces between the orthogonal  
muscle layers.67,68 Electrophysiological studies  
confirm that IGLE could act as low threshold  
tension receptors, since distortion of the 
stomach leads to activation of tension-sensitive  
vagal mechanoreceptors.46,67,69-71

A second class of prominent vagal  
mechanoreceptors are IMAs, which consist of  
parallel arrays of neurite terminals coursing  
parallel to muscle bundles in the longitudinal  
or circular muscle layers14,66,72 and lie in close 
vicinity of interstitial cells of Cajal (ICC).15,73 IMAs  
are mostly located in the upper stomach, 
lower oesophageal and pyloric sphincters.14,74-76  
Based on the morphological features, IMAs appear  
to act as stretch receptors sensitive to  
shearing forces in the long axis. However,  
electrophysiological studies have not been able  
to unambiguously determine the true functionality 
of IMAs.15,70,71

The sensory vagal mechanoreceptors stimulated 
by gastric distension, are the first trigger of  
vago-vagal reflexes, such as gastric  
accommodation,77 inhibition of food intake, and 
antral peristalsis (Figure 1).78 Distension also 

appears to act in synergy with CCK to increase 
afferent activity and consequently decrease food 
intake.79-83 However, Grundy et al.84 disagree to 
the fact that CCK exerts a direct effect on vagal  
afferent mechanoreceptors, rather they suggest  
that the action of CCK is mediated through the 
sensory vagal chemoreceptors in the mucosa.84

The Vagus Nerve as Intestinal Barrier Keeper  

Intestinal epithelial cells maintain a strict barrier 
between the external and internal environment  
via the expression of tight junctions. The tight 
junctions consist of a branching network of 
interacting transmembrane proteins, such as 
claudins and occludins. The loss of epithelial  
barrier integrity and thus tight junction expression 
enables bacterial translocation across the  
intestinal mucosa, which can initiate detrimental 
systemic inflammation after severe injuries.85  
Coimbra et al.86-90 showed that there is increased 
intestinal permeability after haemorrhagic  
shock and traumatic brain and burn injuries, 
characterised by a decreased tight junction  
expression. Pharmacological, nutritional and  
electrical stimulation of the vagus nerve prevents 
the breakdown of the epithelial barrier via the  
stabilisation of tight junction expression  
(Figure 1).88,89,91-96 Evidence suggests that VNS 
maintains the epithelial barrier integrity after  
severe injury by enteric glia activation. Several  
groups have demonstrated that the activation  
of glial cells leads to the release of 
S-nitrosoglutathione (GSNO), which increases 
the expression of tight junctions and improves  
mucosal integrity. These observations were 
confirmed in vivo by intraperitoneal (i.p.) injection  
of GNSO in inflammatory models.97-100

Vagus Nerve and Intestinal Immune System: 
The Cholinergic Anti-Inflammatory Pathway 
(CAIP) 

For many decades, it has been acknowledged  
that a complex interplay exists between the  
nervous system and immune cells. The central  
nervous system (CNS) receives sensory  
information about the presence of inflammation  
and responds appropriately via two specific 
pathways: neuroendocrine and neural routes.101

Afferent arch of CAIP

In light of an overt infection, circular cytokines 
(i.e. IL-1 and TNF-α) or pathogenic components 
can be detected by higher brain structures (e.g. 
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circumventricular organs [CVO]) that are devoid 
of a blood brain barrier. Indeed, administration 
of intravenous (IV) endotoxin elicited c-Fos  
activation in the CVO and NTS.102-104 These  
structures give direct input to motor neurons in  
the DMV, which project vagal efferents to the  
spleen. In this way, the vagus nerve is able to 
modulate the splenic immune response.104-106	

The immune system does not only communicate 
with the brain via the circulation. In the case 
of more localised peripheral inflammation, in 
which the amount of proinflammatory cytokines 
is not detectable by the CVO, afferent vagal 
fibres and adjacent glomus cells are activated  
by cytokines/chemokines, such as IL-1 and mast  
cells mediators.107-109 Electrophysiological studies  
have reported that mast cell mediators and IL-1  
activate afferent vagal fibres (Figure 1).108,110,111 
Furthermore, both IV and IP administration of 
endotoxin induced c-Fos activity in primary  
afferent ganglia (i.e. nodose ganglia)112 followed 
by increased NTS and splenic activity.104 The 
same c-Fos induction was observed in the NTS  
in response to intestinal anaphylaxis and  
inflammation caused by surgical manipulation of 
the gut.113-115 Subdiaphragmatic vagotomy largely 
abolishes c-Fos activity in NTS and DMV after 
i.p. injection of endotoxin (i.e. LPS and SEB).105,116  
Together, these observations strongly indicate  
that the brain is able to modulate the splenic  
immune response indirectly via the detection 
of circulating cytokines and directly via afferent  
input from sensory fibres.

Efferent arch of CAIP 

The splenic immune response plays an important 
role during systemic inflammation, since splenic 
macrophages are the major source of TNF-α in 
sepsis.117 Therefore, the spleen is considered to be  
the perfect target to modulate the immune  
response in response to endotoxemia. In light of 
this, Borovikova et al.118 showed that vagus nerve 
stimulation (VNS) strongly inhibits splenic TNF-α 
production in a model of systemic inflammation, 
introducing the concept of the cholinergic  
anti-inflammatory pathway (CAIP). This anti-
inflammatory response is mediated by the 
reduced activation of splenic macrophages 
expressing alpha7 nicotinic receptor (α7nAChR).  
Acetylcholine (ACh) released by memory T cells, 
namely, interacts with α7nAChR and inhibits the 
secretion of pro-inflammatory cytokines via the 
JAK-STAT pathway.119-122

Over the years, many studies have demonstrated 
the beneficial effect of VNS in other inflammatory 
models such as haemorrhagic shock,123 

pancreatitis124 and collagen-induced arthritis.125 
Ourselves and others also extended the concept  
of CAIP to the GI tract, since the gut is largely 
innervated by the vagus nerve. Indeed, we and 
others showed that electrical, nutritional and 
pharmacological activation of the vagal pathway 
prevents surgical induced inflammation and thus 
postoperative ileus (POI).122,126-129 CAIP activation  
also reduced intestinal inflammation in other 
models: diabetic-induced gastroparesis,130  
colitis,131-133 and LPS-induced septic ileus.134-137 
In contrast, vagotomised mice have a higher 
susceptibility to develop colitis after dextran  
sulphate sodium (DSS) administration.132,138,139 
Moreover, a more severe colitis is also correlated 
with a reduction of mucosal levels of ACh in a  
model of depression.132,140,141 Like in the spleen, the  
anti-inflammatory response of CAIP is mediated 
through α7nAChR macrophages. Deficiency 
of α7nAChR in bone marrow-derived cells  
significantly abrogated the vagal anti-inflammatory 
effect, whereas α7nAChR deficiency in neurons 
and other cells did not have a significant effect  
in POI, indicating that the beneficial effect of  
VNS depends on α7nAChR expression on  
immune cells rather on neuronal cells.129,142 As in  
the spleen, the CAIP is not mediated by direct  
interaction between α7nAChR macrophages and 
efferent vagal fibres, but rather via the modulation  
of cholinergic enteric neurons in proximity of 
intestinal α7nAChR expressing macrophages.113,129 
Other mucosal and submucosal immune cells,  
such as dendritic cells, mast cells, and T and B  
lymphocytes also express nicotinic receptors and 
may, therefore, be involved in CAIP.141

CONCLUSION

To date, electrical stimulation of the vagus nerve  
is already used as a therapeutic tool for  
intractable epilepsy and treatment-resistant 
depression. Currently, the anti-inflammatory  
effects of VNS are explored in three clinical  
trials in patients with rheumatoid arthritis (RA),  
Crohn’s disease and postoperative ileus  
(NCT01552941, NCT01569503 and NCT01572155). 
Future insight from clinical trials and from basic  
research will hopefully offer the cholinergic  
anti-inflammatory pathway as a novel and powerful  
new therapeutic tool.
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