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Meeting Summary
The meeting was arranged as a series of conversations between experts, following a question and 
answer format with two speakers in each presentation. In the first presentation, Dr Soverini and 
Prof Lion discussed the importance of the timing and depth of response with respect to clinical  
outcomes in Philadelphia chromosome positive (Ph+) leukaemias. They showed how sensitive 
and reproducible measurements of molecular response (MR) and the proper interpretation of  
laboratory data are critical to correctly inform therapeutic decisions in patients with chronic  
myeloid leukaemia (CML) and Ph+ acute lymphoblastic leukaemias (ALL). Detection of BCR-ABL  
mutations can establish the need for treatment change and, in some cases, indicate which  
tyrosine-kinase inhibitor (TKI) is most likely to be effective. The speakers addressed the need for  
more sensitive and accurate methods to monitor minimal residual disease (MRD) and detect  
mutations that drive resistance to TKI therapy. They explored two distinct patterns of mutation  
observed in patients with >1 mutation (polyclonal and compound mutations) and how in addition  
to selecting the most appropriate TKI it is also important to consider the most appropriate dose.
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Screening and Monitoring 
Approaches to Optimise 
Treatment in Philadelphia 

Chromosome Positive Leukaemias

It is well established in CML that achieving  
MR milestones at defined time points controls  
the trajectory towards optimal response and 
treatment free remission.1

The concept of early MR (EMR) is prognostically 
important, but, in recent years, the kinetics 
of BCR-ABL transcripts in the first 3 months 
have been shown to be a more reliable and  
accurate indicator of disease state than a 
single measurement at 3 months. An Australian 
study2 demonstrated that BCR-ABL value from 
baseline halving time of <76 days in patients 
on first-line imatinib predicted progression-free  
survival and overall survival. Similarly, a German  
study showed that reduction of BCR-ABL 
transcripts of half a log or more within the 
first 3 months is also associated with better  
survival outcomes.3-5

Although studies suggest EMR kinetics offer 
prognostic information, this has not yet been 
incorporated into the recommendations 
published by European LeukemiaNet (ELN) or 
the National Comprehensive Cancer Network 
(NCCN), because precise cut-off levels have 
not yet been defined and technical issues  
(e.g., the need for a different control gene) still 
hamper prompt application of this approach.

The time taken to achieve MR is important, 
with CML patients that achieve major MR at  
3 months having a higher cumulative incidence  

of achieving MR4.5 after 8 years of receiving 
imatinib than those achieving major MR at 
6, 12, or 18 months.6 Patients demonstrating 
good imatinib responses can take 5 years or 
more to reach MR4.5, the deep MR required 
for treatment free remission in most studies.  
Second generation TKI can achieve these levels 
of deep MR much more rapidly.4

Provisional criteria for selecting the best 
candidates for TKI discontinuation proposed by 
the NCCN include stable MR (MR4.0; BCR-ABL 
≤0.01% IS) for ≥2 years documented on at least 
4 tests performed at least 3 months apart.7  
Results for a range of TKI in CML show that 
relapse-free survival with at least major molecular 
remission was achieved for 33–68% of patients 
after 0.5–7.0 years of treatment.8 

Detection and monitoring of MR requires 
reliable diagnostics. The importance of selecting 
reliable laboratories is underlined by a EUTOS 
laboratories review showing that around 17% 
were unable to reliably score MR4.5 levels in  
2017 (unpublished data). 

Monitoring of BCR-ABL transcript levels in  
Ph+ ALL is also considered valuable. Monitoring 
MRD helps determine who should receive  
allogeneic SCT and who should receive  
post-transplant therapies. Furthermore, MRD  
positivity predicts haematological relapse after  
allogeneic SCT, even with TKI therapy.9 

Monitoring of MR with real-time quantitative 
PCR of BCR-ABL levels is the method of choice 
for Ph+ ALL management. Precise cut-offs 
for MR levels have not yet been defined,10 
although the European Working Group for 

In the second presentation, Dr Bassan and Prof Dr Junghanß discussed the evolving treatment 
landscape for Ph+ ALL, including the role of TKI, chemotherapy, and allogenic stem cell transplantation 
(SCT). The advent of TKI has improved the prognosis for Ph+ ALL, allowing many more patients 
to achieve complete remission and be considered for allogeneic SCT. However, treatment-related 
mortality remains a significant issue after allogenic SCT affecting 20–33% of patients.

Studies show that early death rates are lower for patients receiving ‘light’ chemotherapy and TKI 
with steroids in place of chemotherapy. Furthermore, for patients achieving complete MR, in some  
studies there is no difference in outcome between those who undergo allogenic SCT and those who 
do not, provided that the latter subgroup was selected according to absence of residual disease  
by PCR analysis. Such data suggest that, in Ph+ ALL, novel therapeutic approaches may in some  
patients obviate the need for intensive chemotherapy and allogeneic SCT. Studies are now ongoing 
to explore whether Ph+ ALL patients can abstain from allogenic SCT through selection of the  
strongest TKI upfront and whether chemotherapy-free regimens might be an option. 
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Adult ALL (EWALL) and the European Study  
Group-MRD-ALL consortium are looking to 
standardise methodologies, reduce variability, 
and optimise procedures.

The most common currently known mechanism 
behind TKI resistance is BCR-ABL mutations.11 
ELN and NCCN guidelines recommend BCR-ABL 
kinase domain mutation screening should be 
undertaken in chronic phase CML patients failing 
to reach response milestones, at any sign of loss 
of response, on disease progression, and for  
patients presenting in accelerated or blast 
phase.12 The ELN currently recommends Sanger 
sequencing to detect BCR-ABL mutations, 
although a EUTOS study13 showed Sanger 
sequencing only detects clones representing  
20% of the entire leukaemic load. 

Two distinct patterns have been observed for 
patients with >1 mutation: polyclonal mutations 
(mutations existing separately in different 
clones) and compound mutations (different 
mutations found in the same BCR-ABL protein)14  
(Figure 1). Data show compound mutations 
are harboured by 3% of chronic phase CML 
patients, 30% of accelerated phase or blast 
phase CML patients, and 35% with Ph+ ALL 
who are positive for mutations (Soverini S,  
personal communications). 

Published methodologies for detecting 
polyclonal and compound mutations include 
next-generation sequencing (NGS) of short 
overlapping fragments (where four overlapping 
fragments were used to cover the kinase 
domain),15 long range NGS (allowing the kinase 
domain to be covered in a single read; not 
commercially available any more),16 and NGS on 
the PacBio® platform (Pacific Biosciences, Menlo 
Park, California, USA), allowing reading of longer 
stretches.17 TK domain mutations detected by 
NGS sequencing allow a more accurate picture 
of BCR-ABL mutation status, enabling better  
TKI selection and mutations to be detected  
earlier than by Sanger sequencing.15,18-21

An Australian study22 demonstrated that the 
number of low burden mutations was inversely 
associated with failure free survival. This finding 
was supported by a study showing patients  
without any mutations as assessed by NGS had  
significantly longer progression-free survival  
compared to those with mutations (p=0.041).23  
Such data suggests patients with complete  
cytogenetic response (but not with major MR)  
should be screened regularly for mutations.

Figure 1: The presence of more than one BCR-ABL mutation in Philadelphia positive leukaemias: compound and 
polyclonal mutations. 

BCR-ABL compound mutants present with two mutations within the same BCR-ABL molecule, whereas the 
mutations are in separate clones in the case of polyclonal mutations. Mutations are shown by the red and green stars. 

KD: kinase domains; TKI: tyrosine kinase inhibitors.

Adapted from Khorashad et al.14
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In Ph+ ALL, the complexity of mutant subclones 
has been shown to be higher than in CML, with 
genetic instability of the BCR-ABL gene in  
Ph+ ALL leading to early accumulation of point 
mutations.24 At diagnosis, low burden mutations 
are detected in >20% of Ph+ ALL patients.25-28

The swift emergence of mutations and greater 
genetic complexity of Ph+ ALL poses clinical  
and diagnostic challenges with NGS sequencing 
of BCR-ABL mutations providing the basis for 
improved outcomes. Screening can identify 
different mutant subclones, the percentage 
of affected cells, and presence of compound 
mutations. Digital PCR permits absolute 
quantification of BCR-ABL molecules and 
facilitates assessment of the size of specific 
mutant subclones, but the currently available 
spectrum of mutations detectable on this  
platform is limited.

NCCN guidelines provide treatment 
recommendations for 12 of the most commonly 
occurring BCR-ABL1 mutations.7 In the absence 
of guidelines, use of IC50 heat maps to select 
second-line TKI should be viewed with caution 
because different heat maps produce conflicting  
results.29,30 TKI doses can also have a major 
influence, with doses achieving higher plasma 
concentrations being more likely to be effective 
against certain mutations.30-32

Compound mutations were thought to be broadly 
resistant to TKI, but a recent study suggests 
that there are three categories of compound  
mutations and the efficacy of ponatinib is different 
for each.33

 > Those with an IC50 considered achievable  
even with the lowest dose of ponatinib.

 > Those with very high IC50 values not 
achievable with any clinically feasible  
dose of ponatinib (particularly compound 
mutations including T315I or F317L).

 > Those with IC50 values not achievable  
with lower doses but achievable with  
higher doses of ponatinib. 

Such data underline that, in addition to selecting 
the most appropriate TKI, it may also be important 
to consider appropriate dosing regimens. 

Evolving Strategies for  
The Management of Philadelphia 
Chromosome Positive with Acute 

Lymphoblastic Leukaemia 

In the era of TKI, clinical trials demonstrate 
significant improvements in Ph+ ALL survival. 
Studies show adding any TKI to chemotherapy 
gives a 5-year survival rate of 35–50%,  
compared to pre-TKI studies showing survival 
rates around 20%.34-38

Before the introduction of TKI, patients with Ph+ 
ALL disease had much worse outcomes than those 
with Ph negative (-) ALL. A  population based 
study (using USA Surveillance, Epidemiology, 
and End Results [SEER] data in the TKI era)  
showed no survival difference between Ph+ 
ALL and Ph- ALL, in the 18–39 year age group  
(p=0.46); however, older patients (>40 years) 
with Ph+ ALL had a slight but significant survival 
advantage over Ph- ALL patients (p=0.037).39 
Explanations for improvements in Ph+ ALL 
survival include addition of TKI to standard 
treatment increasing rates of complete remission, 
allowing allogeneic SCT to take place.40

Data from the European Society for Blood and 
Marrow Transplantation (EBMT) showed ALL 
accounted for 16% of allogenic SCT in 2015, and 
that ALL transplants across Europe increased 
from around 1,000 per year in 1998 to 2,500 
per year in 2014. The rise can be attributed to  
marked increases in unrelated donors (due to 
tissue typing improvements), which increased 
donor availability (Figure 2).41

To allow cure by allogeneic SCT it is important 
to achieve complete remission with TKI prior to 
transplant.  Regarding TKI availability, currently 
only imatinib is licensed in Europe for frontline 
ALL treatment, with dasatinib allowed in imatinib 
resistant or intolerant patients and ponatinib 
licensed after dasatinib failure or for patients 
with T315I mutations.  Nilotinib, bosutinib, and 
ponatinib are available through clinical trials.

Important concepts for allogenic SCT include 
obtaining complete remission rates close to 
100% and MRD remission (<10-4), avoiding loss 
of response, MRD positivity, and therapy related 
mortality. Few relapsed/refractory ALL patients 
survive for >1 year, even with new therapies 
such as ponatinib, inotuzumab ozogamicin,  
and blinatumomab.42-44
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Clinical trials show TKI (imatinib, nilotinib, 
dasatinib, or ponatinib) achieve similar complete  
remission in ALL (90% plus).45 However, higher  
rates of complete MR can be achieved for  
nilotinib (MR5: 86%)46 and ponatinib (MR5: 78%)47-48 
compared to dasatinib (MR5: 24%).27,49,50

Studies demonstrate that achieving complete 
MR prior to allogenic SCT reduces risk of 
relapse.  A representative study analysing  
Ph+ ALL transplant patients receiving imatinib 
showed cumulative incidence of relapse was 
86.1% for patients achieving poor MR compared 

to 5.1% for EMR, 6.1% for late MR, and 16.9% for  
intermediate MR.51 Clinicians need to take 
comorbidities into consideration, making use of 
the Haematopoietic Cell Transplantation Specific 
Comorbidity Index to score factors such as 
cardiac conditions, inflammatory bowel disease, 
diabetes, and obesity.52 The index can be used to 
discuss transplant related mortality risks. Studies 
have shown treatment related mortality after 
allogenic-SCT affects 20–33% of patients,53,54 
creating the challenge of identifying the patients 
for whom transplant should be omitted.

Figure 2: Data from the European Group for Blood and Marrow Transplantation Activity Survey 2015 showing 
information on stem cell transplantation. 

ALL: acute lymphoblastic leukaemia; AML: acute myeloid leukaemia; CML: chronic myeloid leukaemia;  
HSCT: haematopoietic stem cell transplant; MDS: myelodysplastic syndrome; MPN: myeloproliferative neoplasms; 
NMD: non-malignant disorder; PCD: plasma cell disorder; SCT: stem cell transplantation; ST: solid tumour.

Adapted from Baldomero and Passweg.41 
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WATCH AN INTERVIEW WITH DR SOVERINI ONLINE

https://goo.gl/rCmwv5

TKI can be used to prevent relapse after 
allogeneic SCT. In the only randomised study 
using imatinib following allogeneic SCT in Ph+ 
ALL, there was no difference in 5-year survival 
(p=0.84) or event free survival (p=0.89) between 
SCT patients receiving prophylactic imatinib 
or treatment following detection of MRD.55  
However, the study showed molecular relapse 
was 69% in the MRD triggered approach group 
versus 40% in the prophylactic group. Both  
approaches have advantages and disadvantages, 
with the MRD triggered approach involving 
less toxicity and the prophylactic approach less 
molecular relapse.   

In 2016, the EBMT’s Acute Leukemia Working 
Party published a position statement on TKI 
use according to pre and post-transplant MRD 
status.56 Recommendations included:

 > Patients who are MRD and preallogenic SCT 
that had become negative should receive 
prophylactic TKI according to pre-transplant 
mutation status or observation and TKI when 
MRD positive. 

 > That patients who are MRD positive, 
preallogenic SCT, and remain MRD positive 
(or MRD negative preallogenic SCT and 
become positive) should be checked for 
BCR-ABL kinase domain mutations and 
receive TKI according to mutation status. 

 > Patients who are MRD negative before 
transplantation and remain MRD negative 
after transplantation should receive 
prophylactic imatinib or be observed to 
screen for becoming MRD positive and 
receive TKI according to mutation status.

A clear message from trials exploring 
chemotherapy combinations is that light 
chemotherapy regimens avoid induction 
mortality. Studies show early death rates for 

patients receiving intensive chemotherapy in 
combination with TKI are 4.0–8.8%;34,46,57 for  
non-intensive chemotherapy plus TKI, these rates 
are 0.0–4.2%; 27,34,54 and for TKI (with steroids)  
without chemotherapy they are 0.0%.50,58,59 

Recent studies using nilotinib or ponatinib 
in newly diagnosed Ph+ ALL showed no 
difference in overall survival between patients 
receiving and not receiving chemotherapy, 
raising the possibility of patients avoiding  
chemotherapy.47,46,59-61 Furthermore, a poster60  
was presented at the European Hematology 
Association (EHA) 2018 Congress that found 
no difference in outcomes for Ph+ ALL patients  
with complete MR who underwent transplant 
and those who did not undergo transplantation. 
Such data suggest allogenic SCT might  
be avoidable in patients with complete and  
durable MR.

A number of trials are currently exploring  
whether Ph+ ALL patients can abstain 
from allogenic SCT through use of dual 
therapies, including the MDACC trial and the 
D-ALBA Frontline Sequential Dasatinib and  
Blinatumomab in Adult Philadelphia Positive 
Acute Lymphoblastic Leukemia study, 
combining second or third-generation TKI 
with a monoclonal antibody alone or with  
corticosteroids, respectively. Additionally, the 
EWALL03 study in Ph+ ALL patients above 
the age of 55 years with no transplant options 
(due to age) will be comparing deintensified 
chemotherapy plus first and third-generation  
TKI. Furthermore, in frontline Ph+ ALL, a Takeda 
study across all age groups is comparing  
different TKI regimens. In conclusion, TKI have 
been shown to confer clear benefits on Ph+ 
ALL patients, with new possibilities to reduce 
risk of mortality by reducing chemotherapy and 
allogenic SCT.
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