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INTRODUCTION

Glucocorticoids (GC), also called 
glucocorticosteroids or steroids, are the mainstay 
therapy for numerous inflammatory diseases, 
such as asthma, dermatitis, rheumatoid arthritis; 
prevention of graft rejection; and autoimmune 
diseases. GC are steroid hormones that are 
synthesised and released by the adrenal cortex. 
GC have profound effects on various cell  

processes and organ-specific biological  
functions.1 The regulation of downstream 
genes by GC involves either gene repression  
or activation. While gene activation leads to 
beneficiary actions of GC, repression of gene 
signalling is hypothesised to cause adverse 
effects due to prolonged use of steroids.2  
Although the majority of patients with 
inflammatory diseases and immune disorders 
respond to oral GC, 10–20% of patients do  
not respond even to very high doses of GC.  
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Resistance to steroids has also been reported 
in rheumatoid arthritis and inflammatory bowel 
disease and has been extensively studied in  
asthma. Despite the fact that only 5–10% of 
asthmatic patients do not respond to steroids,  
this leads to a significant socioeconomic  
burden and affects their quality of life as a result 
of the side effects associated with the prolonged 
usage of high doses of steroids.3 Therefore,  
it is important to identify the patients with 
poor responses to steroids and to elucidate the 
molecular mechanism of steroid resistance. 

This review focusses on the features, possible 
resistance mechanisms known so far, and 
recent developments in the treatment regimen 
of steroid-resistant asthma. To understand  
steroid-resistant asthma, the authors also bring 
the normal function of the steroids in a cell to  
the attention of the readers. 

THE DIVERSE PHENOTYPES  
OF ASTHMA

Asthma is characterised by reversible 
expiratory airflow obstruction or airway  
hyper-responsiveness and airway inflammation. 
Approximately 235 million people have asthma 
worldwide.4 In contrast to the previous Th2 
dominant hypothesis, the phenotypes of asthma  
have been classified into high Th2 (eosinophilic 
inflammation) and low Th2 types (neutrophilic 
inflammation with Th1 and Th17 involvement).5,6 
Asthmatics with high Th2 phenotypes are 
responsive to corticosteroids, whereas non-Th2  
asthmatics are much less so. The current treatment  
includes increasing the dosage of corticosteroids  
or using secondary immunosuppressants that  
are more toxic. Biologics, such as monoclonal  
antibodies against proinflammatory cytokines  
like IL-4, IL-5, IL-13, and IgE, have also been tried.

CLINICAL PRESENTATION OF 
GLUCOCORTICOID-RESISTANT ASTHMA

The response to steroids can be visualised as a 
spectrum, with steroid resistance placed at one  
end. Complete resistance to steroids is a rare case; 
usually poor response to steroids is observed, 
so that a high dose of steroids is required to  
control asthma, a condition termed steroid-
dependent asthma. In 1968, Schwartz et al.7 

described GC resistance for the first time in six 
patients with low eosinopenic response, who did 
not respond clinically to high doses of systemic 
GC, although they showed reversibility to 
inhaled β-agonists. Later, a number of studies 
reported such insensitivity to steroids in 
asthmatic patients.3 The detailed analysis of these 
patients revealed that the unresponsiveness  
was due to the inefficiency in the  
anti-inflammatory effects of steroids rather  
than their metabolic or endocrine functions.  
The thickness of the airway epithelium  
and basement membrane in steroid-resistant  
patients was larger than the patients with steroid 
sensitivity, in spite of having similar epithelial 
damage.8 GC-resistant asthma is defined by a 
failure to improve forced expiratory volume in  
1 second (FEV1) by >15% even after an adequate 
dose of prednisolone (40 mg) for 2 weeks.  
These patients present bronchodilation with 
inhaled β2 agonists and typical diurnal variation 
of peak expiratory flow.9 The diagnosis of  
steroid-resistant asthma is entirely based on the 
clinical history, symptoms, and lung function 
in the context of GC use. For a clear diagnosis, 
one has to rule out other diseases, such as  
cystic fibrosis and bronchiectasis.10 Currently, 
there is no available clinical marker or  
established immune adherence test for the 
diagnosis of steroid-resistant asthma.

To understand the mechanisms behind steroid  
resistance in asthma, one should first  
understand the functioning and the mechanism 
of steroid receptor action. This will enable the 
identification of more cues for the failure of its 
function, leading to steroid resistance.

THE GLUCOCORTICOID RECEPTOR 
AND ITS FUNCTION

The GC receptors (GR) belong to the nuclear 
receptor Type I family. The human GR (hGR) 
gene is located on the chromosome 5q11-q13.11 
The hGR gene consists of nine exons, wherein  
the protein coding region is present between 
exon 2 and exon 9 (Figure 1). hGR is known to 
have three alternative promoters: 1A, 1B, and 1C. 
Although hGR does not have prominent TATA  
or CCAAT boxes, it contains multiple GC boxes.12
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Alternative splicing of GR pre-mRNA gives 
rise to two dominant isoforms: GRα and GRβ. 
GRα is located in the cytoplasm whereas GRβ 
remains in the nucleus and acts as a dominant 
negative or decoy receptor for GC13 (Figure 1).  
hGRβ was identified as having a potential 
contribution to GC resistance in several diseases. 
It has been shown that while proinflammatory  
cytokines such as TNF-α and IL-1 increase the  
expression of GRβ, the formation of the GRβ/α 

heterodimer attenuates the function of GRα14  
(Figure 1). The GR protein has a modular structure  
similar to other members of its nuclear receptor  
family. It has three major domains: a) variable 
N-terminal domain (421 amino acids),  
b) central DNA binding domain (65 amino acids),  
and c) C-terminal domain (250 amino acids).  
Furthermore, the motif containing the nuclear 
localisation signals is present in both the DNA 
binding domain and ligand binding domain.15

Figure 1: hGR gene structure and its isoforms. 

The hGR gene has nine exons and three variable promoters giving rise to several glucocorticoid receptor isoforms 
that differ in the 5’-untranslated region. Alternative splicing of exon 9 at the 5’ end gives rise to α and β isoforms. 
Domains of hGR show the LBD to be present at the C-terminal, which differentiates between hGRα and hGRβ in  
their functionality.

DBD: DNA binding domain; GC: glucocorticoid; hGR: human glucocorticoid receptor; Hsp90: heat shock protein 90; 
LBD: ligand binding domain.
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Mechanism of Glucocorticoid  
Receptor Action

Endogenous GC participate in various 
physiological processes in a variety of cells, 
including hepatocytes, epithelial cells, neurons, 
immune cells, and cardiomyocytes (Figure 2). 
GC regulate multiple pathways, including 
carbohydrate metabolism, programmed cell 
death, amino acid metabolism, and inflammation.1 
They have three basic modes of action:  
first, the binding of heterodimerised receptors   
to  the GR element (GRE) in the target genes  
to activate the transcription; second, inhibition 
of target gene expression by binding of GR 
heterodimer onto the negative GRE (nGRE);  

third, transactivation or transrepression by  
physical interaction with other transcription  
factors.16 The GR bind with ligands and  
translocate into the nucleus. The GRα usually  
resides in the cytoplasm as part of a large  
multiprotein complex composed of chaperones  
such as Hsp90, Hsp70, p23, and immunophilin 
p59. These proteins bind to the unliganded  
GR and maintain its conformation in the 
cytoplasm without compromising the ligand  
binding efficiency.17 When the ligand binds to 
the receptor, the protein complex dissociates, 
causing a conformational change in the receptors 
and exposing the nuclear localisation signals.  
This leads to the translocation of the GR into  
the nucleus through nuclear pores.16

Figure 2: A) Basic mechanisms of steroid action and B) cellular effects of corticosteroids: pleiotropy in  
various cells. 

A) The descriptive figure illustrates how glucocorticoids induce their effects in the cells. B) The cellular effects that 
are brought about in different types of cells due to the various gene regulations carried by corticosteroids.

AP-1: activator protein-1; GRE: glucocorticoid receptor element; GTM: general transcription material; Hsp90: heat 
shock protein 90.
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Once GR enters the nucleus, the activated 
hormone-bound receptor dimerises and binds to 
the GRE via a zinc finger motif containing a DNA 
binding domain. Binding of GR to GRE leads to 
conformational changes in the receptor, which 
allow it to interact with several coactivators, 
such as cyclic adenosine monophosphate 
response element binding protein, p300,  
steroid receptor coactivator-1, p/CIF, SWI/SNF, 
and NcoA-1, which are critical in modulating  
the chromatin structure.2 These coactivators 
activate gene transcription by unwinding the  
chromatin structure. Corticosteroids suppress 
inflammatory responses by activating the 
expression of anti-inflammatory proteins such 
as annexin-1, secretory leukoprotease inhibitor, 
IL-10, and IκBα. To generate this response,  
a large steroid concentration is required, 
but in a clinical scenario, a very small dose 
of corticosteroids is enough to generate the 
anti-inflammatory response.18 Therefore, it is 
a controversial suggestion that the activation 
of genes would lead to the fruitful functioning 
of steroids. Hence, it is thought that an  
increase in transcription might generate 
systemic side effects, such as osteoporosis,  
growth retardation in children, skin fragility due  
to increased apoptosis, and metabolic effects 
observed due to overuse of steroids. To support 
this hypothesis, it was shown that mutant 
GR, which was unable to bind to GRE, did not 
show any loss of anti-inflammatory properties 
of steroids and was capable of suppressing  
NFκB-activated genes. This could also mean 
that GR has a different pathway of inhibiting  
NFκB-mediated inflammation19 (Figure 2). 

At the promoter level, GR can also inhibit the 
expression of its target gene through nGRE.20 
The inhibition in the transcription of genes 
takes place typically through two mechanisms; 
first, GR competes for its binding site on 
nGRE and hinders the binding of the other 
transcription factors, inhibiting the transcription 
of the downstream genes such as osteocalcin.21  
The second mechanism is via composite GRE,  
wherein the GR dimer bound with nGRE 
interacts with adjacent transcription factors and 
results in either gene repression or activation, 
which is dependent on the subunit of the  
composition. nGRE have been identified in the 
promoters of genes encoding for glutathione 
S-transferase, insulin, and vasoactive intestinal 
polypeptide receptor 1.

The GR can also regulate the expression of 
genes independent of direct binding to GRE. 
The GR exerts its anti-inflammatory role mainly  
through interacting with other transcription 
factors, such as NFκB and AP-1, binding to 
each other via the leucine zipper interaction.23  
NFκB is the master regulator of many  
proinflammatory cytokines and immune genes,  
and it seems intuitive that GR might reduce  
inflammation by inhibiting NFκB.24 Another 
indirect way that GR inhibits protein synthesis  
is by reducing the stability of RNA encoding  
granulocyte-macrophage colony-stimulating 
factor (GM-CSF) and cyclo-oxygenases. The GR  
receptor also represses proteins of the  
MAPK family by inhibiting the phosphorylation  
essential for their activation. 

The capability of GC to produce anti-
inflammatory actions also stems from their 
ability to induce apoptosis in inflammatory cells, 
such as thymocytes, eosinophils, and monocytes,  
and provide protection against apoptotic stimuli  
in cells with non-lymphoid origin.25 GC have also  
been recently reported to inhibit mucus secretion 
in airways by repressing the expression of 
mucin genes such as MUC2 and MUC5AC.26 In 
addition, GC are efficient at reducing neurogenic 
inflammation by inhibiting the synthesis of  
tachykinins and tachykinin receptors, which 
amplify the inflammatory responses.27 

MOLECULAR MECHANISMS  
OF STEROID RESISTANCE 

With more than a decade of studies attempting 
to identify the molecular mechanisms of steroid 
resistance, a lot of pathways and mechanisms 
have been explored; however, there are 
four overarching steps that are essential in 
GC dysfunction: a) reduced GR expression,  
b) defective binding of steroids to the receptor,  
c) reduced ability of the receptor to bind to the  
DNA, either due to competition or reduced  
nuclear translocation, and d) increased expression  
and antagonism from proinflammatory 
transcription factors (AP-1 and NFκB).3  
In addition, a number of other mechanisms, like  
increased GRβ expression, defective histone 
acetylation, and involvement of immune cells 
have also been demonstrated. Here, a few key 
mechanisms of steroid resistance are described.
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Defective Glucocorticoid Receptor 
Binding and Nuclear Translocation

Reports indicate that cytokines such as IL-2,  
IL-4, and IL-13 are overexpressed in the airways 
of steroid-resistant asthma patients.3 In T cells  
and inflammatory cells, these cytokines are 
presumed to reduce GR affinity and elicit 
a local resistance to the anti-inflammatory  
action of GC.28 These cytokines reduce steroid  
functioning by preventing phosphorylation 
of the GR. Impairment in GR phosphorylation 
and subsequent impaired translocation of the  
receptor into the nucleus and reduced binding  
to GRE have been reported in large proportions  
of patients with steroid unresponsiveness. p38  
mitogen activated protein kinase (p38MAPK) is 
thought to participate in the phosphorylation 
of GR, which does not allow for nuclear  
translocations, and this effect is blocked upon 
addition of a p38MAPK inhibitor.29,30 IL-2, IL-4,  
IL-5, and IL-13 are known to induce the 
phosphorylation of serine 226 on GR, which is  
inhibited by p38MAPK inhibitor. Selective 
inhibition of p38MAPK isoforms alpha, beta, 
and gamma increases the responsiveness to  
steroids in alveolar macrophages and peripheral 
blood mononuclear cells (PBMC) of severe  
asthma patients in response to IL-2 plus IL-4.31

TNF-α-induced p38MAPK, c-Jun N-terminal 
kinase (JNK), also phosphorylates GR at 
serine 226, inhibiting its binding with GRE in 
PBMC isolated from severe asthma patients.32  
To combat the phosphorylation-induced 
inefficiency of GR, corticosteroids and  
long-acting β2 agonists (LABA), like formoterol,  
activate MKP-1 and protein phosphatase 
2A (PP2A), endogenous inhibitors of the 
JNK and p38MAPK pathways.33 In alveolar 
macrophages of patients with a poor response  
to steroids, it was observed that MKP-1  
expression was significantly reduced and was  
negatively corelated with p38MAPK activity.  
PP2A expression and activity was found to  
be reduced in PBMC of steroid-resistant  
asthma patients and knockdown of PP2A or  
inhibition reduced steroid responsiveness by  
inhibiting nuclear translocation and increasing  
JNK1 phosphorylation. 

Inducible nitric oxide synthase (iNOS) has been 
reported to be increased in severe asthmatic 
patients, and high levels of nitric oxide have  

been reported to modify the GR ligand 
binding site by nitrosylating the GR at the  
Hsp90 interaction site, thereby inhibiting the  
translocation of GR into the nucleus. Whether 
this is relevant to steroid-resistant patients or  
not remains to be studied.28,34 Intriguingly,  
iNOS is increased by smoking,35 and steroid 
insensitivity in smokers with asthma may be 
attributed to this mechanism. 

Increased Glucocorticoid  
Receptor-β Expression

The dominant negative isoform of GR, GRβ, 
has been described to be increased in the 
lymphocytes, neutrophils, and PBMC of steroid- 
resistant patients.36,37 As previously explained, 
GRβ is induced by proinflammatory cytokines 
and competes with GRα for the GRE, and hence 
it acts as a dominant negative inhibitor. GRβ 
also acts as a decoy receptor as it does not 
have any ligand binding sites.14 Microbial super 
antigens, such as Staphylococcal enterotoxins, 
also increase the expression of GRβ and this leads 
to steroid resistance in nasal explant models.37 
Another possible mechanism was discovered 
in alveolar macrophages of steroid-resistant 
asthmatic patients, where knockdown of GRβ 
with siRNA resulted in GRα nuclear translocation 
and increased steroid responsiveness.37

Defective Histone Acetylation

In a different group of steroid-resistant asthmatic 
patients, compromised anti-inflammatory action 
of steroids was observed along with reduced 
side effects. This was attributed to the inability 
of GR to acetylate lysine residue (K5) and hence 
transactivation of genes, which is required both 
for anti-inflammatory action and side effects. 
Repression of gene expression is also mediated 
by recruitment of histone deacetylase 2 (HDAC2) 
to deacetylate the chromatin and cause 
structural changes. HDAC2 expression has been 
reported to be reduced in alveolar macrophages, 
airways, and peripheral lungs in patients with 
severe asthma and steroid resistance.38-40  
The mechanism for this has been elucidated: 
oxidative and nitrative stress led to the formation 
of peroxynitrite, which nitrates tyrosine 
residues on HDAC2, resulting in ubiquitination,  
degradation, and inactivation of HDAC2.  
Oxidative stress also phosphorylates PI3Kδ,  
which further leads to phosphorylation and 
inactivation of HDAC2.40-42 
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Immune Mechanisms

Th17 cells have been shown to be the hallmark 
cell type as they not only increase in number 
but also induce neutrophilic inflammation in  
steroid-resistant patients. In mice, adoptive 
transfer of Th17 cells leads to steroid resistance.  
In addition to this, IL-17 increases the expression 
of GRβ in airway epithelial cells more than 
in other cell types and is not suppressed by  
corticosteroids in vitro. When Th17 is increased, 
Treg cell response is reduced as they fail to 
secrete IL-10 in response to steroids; however,  
it was recently shown that oral administration of 
vitamin D3 enhanced ex vivo Treg response to 
steroids.43 This suggests that vitamin D3 could  
be used as a potential therapeutic drug along 
with steroids.

Possible Therapeutic Strategies to 
Control Steroid-Resistant Asthma

With the present studies and insight into the 
mechanism of action of steroids, many potential 
strategies have been identified to control steroid- 
resistant asthma. One of the most common 
strategies is the use of broad-spectrum  
antibiotics.44 This is due to the fact that most 
cases of neutrophilic asthma that are resistant 

to corticosteroids are because of bacterial 
infections.44 Interestingly, solithromycin, a novel 
macrolide, improved oxidative stress-mediated 
steroid insensitivity, and, when it was given 
along with steroids, also inhibited neutrophilia.45 
In this respect, phosphodiesterase 4 inhibitors 
and oral roflumilast are in clinical development 
as an anti-inflammatory regimen; however, 
these oral uses are limited by their side effects, 
such as nausea, diarrhoea, and headaches, and 
inhaled drugs have proven ineffective so far.46 
p38MAPK inhibitors look promising based on the 
theoretical and experimental studies in steroid-
resistant asthma.31,47 However, in rheumatoid 
arthritis, prolonged administration of p38MAPK 
inhibitors led to the development of tolerance for  
the drug, suggesting that this might not be the  
only essential pathway.48 HDAC2 restoration with  
plasmid vectors has been reported to improve  
steroid responsiveness in macrophages of severe 
asthma patients, but administration of plasmids 
to patients does not seem clinically viable.49  
In such a case, selective activation of HDAC2 
could prove beneficial; drugs like theophylline 
and nortriptyline are known to increase 
HDAC2 expression and increase HDAC2 
activity by inhibiting PI3Kδ.50-52 Similarly, 
sulforaphane and curcumin have been found 

Table 1: List of possible drugs and novel therapeutic strategies for the treatment of steroid-resistant/severe asthma 
by interfering with the pathways that cause it.

COPD: chronic obstructive pulmonary disease; HDAC2: histone deacetylase 2; PDE4: phosphodiesterase type 4; 
PP2A: protein phosphatase 2A; GR: glucocorticoid receptor; p38 MAPK: p38 mitogen activated protein kinases.

Study Drugs Target molecule Mechanism of action

Mercado et al.,31  
2011

p38 MAPK 
inhibitors

p38 MAPK Inhibits phosphorylation of serine 226 on the GR.

Mercado et al.,47  
2012

LABA formoterol PP2A Increases PP2A, hence dephosphorylating  
p38 MAPK-γ and reducing phosphorylation  
of GR on serine 226.

Chong et al.,46  
2011

Roflumilast PDE4 PDE4 inhibitor.

Cosio et al.,50  
2004

Theophylline PI3Kδ Inhibits PI3Kδ and restores HDAC2 activity  
in macrophages from patients with COPD.

Mercado et al.,51  
2011

Nortriptyline PI3Kδ Inhibits PI3Kδ and restores HDAC2 activity  
in macrophages from patients with COPD.

Kobayashi et al.,45  
2013

Macrolides PI3Kδ pathway Targets the PI3K pathway and restores  
HDAC2 activity.

To et al.,52  
2010

IC87114 PI3Kδ inhibitor Targets the PI3K pathway and restores  
HDAC2 activity.
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