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Novel Targets and Therapies in T Cell Lymphoma
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Abstract
This review presents the recent advances in our understanding of the cellular pathogenesis of T cell 
non-Hodgkin lymphoma (NHL) and the potential of clinically targeted therapies.  Patients with T cell 
NHL continue to face a limited prognosis, with the large majority experiencing a relapsed/refractory 
disease course and succumbing to their disease. Recent significant advances in our understanding 
of lymphomagenesis have not only revealed the complexity of T cell NHL but also helped to identify 
the cellular structures and pathways required for tumour proliferation, immune evasion, and therapy 
resistance. The NFκB pathway plays a critical role in T cell lymphoma through complex interactions 
with cell surface receptors and ligands, the proteasome, and crosstalk with ancillary pathways, 

This issue’s Editor’s Pick is from Kesavan and Collins, presenting the 
recent advances in our understanding of the cellular pathogenesis 
of T cell non-Hodgkin lymphoma (NHL) and the potential of clinically 
targeted therapies. There is an urgent and unmet clinical need to improve 
the limited prognosis faced by patients with T cell NHL, but, excitingly, with 
our rapidly evolving understanding of tumour biology, we are unravelling the 
biology of the various T cell NHL subtypes and exploiting it to our advantage.  
We are now approaching an era in which we will not only be able to target the 
cells of origin but also be able to customise therapy.

Samantha Warne
Editor
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INTRODUCTION

The rapid evolution of laboratory technologies 
over the last decade has enhanced our ability 
to understand the intricate pathways involved 
in lymphoma biology and therapy resistance, 
heralding an era of novel, targeted, non-
chemotherapy-based approaches to treatment.1 
However, the outcome of most peripheral 
T cell lymphoma (PTCL) subtypes remains 
poor, highlighting the limitations of traditional 
chemotherapy and the importance of a biology-
driven paradigm.2 This article presents an 
update on recent advances in T cell lymphoma 
biology by examining the current evidence for 
pathways implicated in disease and commenting 
on their therapeutic potential (Figure 1).

THE NFκB PATHWAY 

A common characteristic of various lymphoma 
and leukaemia subtypes is constitutive 
expression of NFκB, a master regulator of  
the inflammatory response.3,4 In the canonical 
(classical) signalling pathway, NFκB release is 
mediated by the activation of proinflammatory 
cell surface receptors (TNF receptor, IL receptor, 
Toll-like receptor, T cell receptor [TCR], 
epidermal growth factor receptor), activating 
the IκB kinase complex.4 In the non-canonical 
(alternative) signalling pathway, NFκB activation 
is triggered by signalling from CD40L, 
lymphotoxin receptor, and B cell activating 
factor receptor.5 Once activated, NFκB directly 
binds to DNA, propagating a number of pro-
oncogenic changes. Its role in lymphomagenesis 
can be broadly separated into three categories: 
proinflammatory (upregulation of cytokines, 
such as IL-6, IL-8, and TNF-α, and chemokines, 
such as CXCL2), antiapoptotic, and induction of 
mitogenic proteins (e.g., c-Myc).4,6,7 

As demonstrated by Wang et al.,8 tyrosine 
kinase interaction with the TCR signalosome 
(TCR proteins acting as a network hub,  
orchestrating interactions to control signalling)9 
leads to activation of the NFκB pathway and 
production of specific transcription factors 
required for T cell lymphoma proliferation, 
immune evasion, and therapy resistance. 
Furthermore, NFκB activation has been shown 
to induce programmed cell death protein-1 
(PD-1) expression and histone modification in  
T cells, macrophages, and B cells, leading to T cell 
exhaustion.8 With recent advances in small 
molecule therapy, it is now possible to target 
components and ancillary pathways involved in 
NFκB activation.10 

CELL SURFACE TARGETS

CD30

The discovery of immunohistochemistry and 
the understanding that a proportion of T cell 
lymphomas express CD30 have led to the 
successful development of anti-CD30 as a 
therapeutic strategy, especially for anaplastic 
large cell lymphoma (ALCL), in which CD30 
stimulation is known to upregulate NFκB activity.11 
Brentuximab vedotin (BV) is an antibody–drug  
conjugate that targets CD30 in which the 
conjugated agent, monomethyl auristatin E, 
is a potent anti-tubulin toxin. BV has shown  
profound anti-tumour activity as a single agent 
in relapsed ALCL. Among 58 patients with  
relapsed/refractory ALCL treated with single 
agent BV, an overall response rate (ORR) of 86% 
and complete response (CR) rate of 57% was 
observed,12 which translated to a 5-year overall 
survival of 60%, an unprecedented survival 
rate in this patient group.13 Efforts are now 
being made to use BV in the upfront setting. 
Twenty-six patients with CD30-expressing  

such as the PI3K/Akt/mTOR cascade, which are also involved in chemokine and cytokine-mediated  
cellular signalling and growth. There is now also growing evidence for recurrent mutations involving 
the JAK/STAT pathway in a number of T cell lymphoma subtypes. Preclinical studies have highlighted 
the importance of novel cell surface proteins, downstream pathways, proteasome activation of 
NFκB, nuclear transport proteins, folate metabolism, epigenetic regulators, and cell of origin  
derivation.  These advances represent a new era in T cell NHL therapy development. Although the 
optimal chemoimmunotherapy combination for first-line and salvage therapy is yet to be defined, 
the future paradigm is clearly shifting towards a biology-driven approach, which will hopefully yield 
improved outcomes for all patients with T cell lymphoma.
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T cell lymphoma (16 of whom had ALCL) were 
treated with cyclophosphamide, doxorubicin, and 
prednisolone in combination with BV. The ORR 
was 100%, with a 92% CR rate. The estimated 
5-year progression-free survival (PFS) and 
overall survival were 52% and 80%, respectively, 
which compares favourably with historical 
data.14 The results of a subsequent Phase III,  
randomised, double-blind, placebo-controlled 
trial, ECHELON-2,15 comparing cyclophosphamide, 
doxorubicin, and prednisolone in combination 
with BV with standard cyclophosphamide, 
doxorubicin, vincristine, and prednisone (CHOP) 
chemotherapy, are eagerly awaited. 

TCRB1 and TCRB2

More recently, the ability to discriminate between 
normal and abnormal T cells through analysis of 
the TCR β-chain has been explored. There are 
two genes involved in the TCR β-chain constant 
region (TCRB1 and TCRB2), which are expressed 
in a mutually exclusive manner. Hence, a normal 
population of T cells will comprise a mixture of 
TCRB1+ and TCRB2+ cells.16,17 In their landmark 
paper, Maciocia et al.18 demonstrated tumour cell 
clonality, based on TCRB1+/- status, in peripheral 
blood, marrow, and tissue samples from patients 
with a range of T cell non-Hodgkin lymphoma 
(NHL) subtypes. Using a mouse model of  
T cell NHL, the researchers demonstrated the 
efficacy of targeting TCRB1-expressing malignant  
T cell clones with anti-TCRB1 chimeric antigen 
receptor-expressing T cells.18  These findings  
carry significant implications not only for therapy 
but also for diagnosis and disease monitoring. 

Cell Surface Receptors

Cell surface receptors also provide a means for 
malignant T cell survival through interaction with 
external stimuli within the pathological niche. 
The transmembrane receptor integrin αvβ3, 
expressed on malignant cells, plays a pivotal 
role in this interaction. Thyroid hormones are 
known to exert their action through simultaneous 
binding of nuclear receptors and integrin 
αvβ3.19,20 Cayrol et al.21 demonstrated that thyroid  
hormones at physiologic levels can stimulate 
murine T cell lymphoma via intracellular  
pathways, ultimately leading to activation of 
NFκB and angiogenesis promotion. Furthermore, 
using a PTCL not otherwise specified (PTCL-NOS) 
xenograft model, Cayrol et al.21 demonstrated 

the therapeutic efficacy of cilengitide  
(a clinically available integrin αvβ3 inhibitor).  
Mice treated with cilengitide had a statistically 
significant reduction in tumour size, associated 
with decreased NFκB pathway activation and  
increased apoptosis.21 

IL receptors also play an important role in the 
activation of the NFκB pathway. Recent evidence 
has identified a pathogenic role for IL-7 and  
IL-7R in T cell lymphomas.22-25 Using mouse 
models, Yasunaga et al.26 demonstrated that  
increased IL-7R signalling promoted tumour 
growth and steroid resistance in lymphoid 
malignancies. Conversely, inhibition of IL-7R 
signalling using an antibody–drug conjugate 
could effectively reduce tumour size, limit  
secondary lymph node infiltration, and potentially 
overcome steroid resistance.26 

Programmed Cell Death Protein-1/
Programmed Death-Ligand 1

As previously noted, NFκB pathway activation 
induces PD-1/programmed death ligand-1 
(PD-L1) expression in a number of different 
cell types, including T cells and macrophages. 
Histopathological studies have confirmed 
increased PD-1/PD-L1 expression in a number of 
T cell NHL, especially in nodal and extranodal 
aggressive phenotypes.27-29 Thus, PD-1/PD-L1 
blockade has been the focus of a number of  
early-phase studies in lymphoma. 

Nivolumab, a fully human IgG4 monoclonal 
antibody (mAb) against PD-1, was noted to 
induce an ORR of 15% and 40% in mycosis  
fungoides (MF) and PTCL NOS, respectively,  
at a median follow-up of 67 weeks.30 However, 
it must be noted that the number of participants 
in this early-phase study was limited and no  
cases of CR were observed in the T cell NHL 
cohorts.30 Nevertheless, given the signal of 
favourable activity combined with an acceptable 
safety profile, further studies are underway 
exploring the potential for combining PD-1 
inhibition with other agents.  

Ansell et al.31 recently reported preliminary  
findings of a Phase I study of nivolumab and 
ipilimumab combination therapy, a human mAb 
targeting CTLA-4 (involved in the non-canonical 
NFκB pathway), in heavily pretreated NHL.  
Of the 11 T cell NHL subjects (7 cutaneous T cell 
lymphomas [CTCL] and 4 PTCL-NOS), only 1 (9%) 
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achieved a partial response, 4 (36%) had stable 
disease, and no cases of CR were observed.  
The median overall survival in the T cell NHL  
cohort was 13.2 months, with a median 
progression-free survival of 2 months. Despite 
the limited number of participants, these results 
were favourable when compared to the B cell 
NHL cohort and similar to those noted in prior 
studies of nivolumab monotherapy.31   

Chronic Epstein–Barr virus infection is known 
to induce PD-1/PD-L1 expression. Given its 
association with extranodal natural killer/T cell 
lymphoma (ENKTL), there has been increasing 
interest in its role in this subtype of T cell NHL. 
Retrospective studies have identified PD-L1 
expression as a potential marker of favourable 
disease control, with improved OS and PFS noted 

in both advanced and nasal-type lymphomas.32,33 
Although combination chemotherapy is still 
the preferred first-line treatment,34-37 novel 
therapies are being studied in the relapsed/
refractory setting. In a recently published study, 
Kwong et al.38 treated seven ENKTL patients 
with relapsed/refractory disease following 
exposure to L-asparaginase-containing regimens.  
Patients received single agent pembrolizumab 
(anti-PD-1 mAb) at a fixed dose of 2 mg/kg at 
3-weekly intervals (with the exception of one 
patient who was dosed at 2-weekly intervals). 
After a median of seven cycles of therapy and 
a median follow-up of 6 months, all patients 
demonstrated a response, with five (71%) 
meeting the criteria for CR and strength of PD-1  
expression correlating with disease response.38  

Figure 1: An overview of novel targets in T cell lymphoma.

AURKA: Aurora A kinase; CAR-T: chimeric antigen receptor T cell; DHF: dihydrofolate; ER: enhancer; HDACi: histone 
deacetylase inhibitor; TCR: T cell receptor; TKR: tyrosine kinase receptor; THF: tetrahydrofolate; TF: transcription factor. 
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PI3K/AKT/mTOR PATHWAY INHIBITION

Although not directly linked to NFκB regulation, 
there is considerable cross-talk between the 
PI3K pathway and canonical activation of 
NFκB via AKT.39 Direct suppression of either 
pathway results in a reciprocal reduction in 
activity of the other.40 Various B cell lymphoma 
models have also demonstrated simultaneous 
activation of both pathways contributing to  
lymphomagenesis.41,42 In this regard, a number 
of recent studies have identified the sensitivity 
of B and T cell lineage leukaemia and lymphoma 
cells to autoimmunity checkpoint activation 
(to avoid clonal deletion by autoreactive B and 
T cell receptors), via upregulation of numerous 
pathways, including PI3K activation.43-45   

Given that in vitro PI3K-δ/γ subunit inhibition 
can directly supress T cell lymphoma growth 
and proliferation, Horwitz et al.46 studied 
the activity of duvelisib (a novel PI3K-δ/γ) 
in a Phase I open-label trial in patients with  
relapsed/refractory PTCL-NOS (n=16) and 
CTCL (n=19), the majority of the latter group 
being histone deacetylase inhibitor-resistant.  
The researchers observed an ORR of 50% and 
31.6% for PTCL-NOS and CTCL, respectively,  
with three patients achieving a CR. Changes in 
cytokine profile correlated with disease response, 
with an increase in soluble CD40L and IL-17α 
conferring a favourable outcome.46 Once again, 
despite limited participant numbers, preliminary 
data for PI3K inhibitors in T cell lymphoma 
is promising and the outcomes of a number 
of forthcoming clinical trials investigating 
novel combinations that include PI3K pathway  
inhibition are eagerly awaited. 

The mTOR pathway is defined by the complex 
and inter-related activation of two distinct 
protein complexes, mTORC1 and mTORC2, 
which interact closely with the PI3K pathway 
and act upstream from and influence NFκB.  
Together, the interaction and activation of 
this protein complex leads to eIF4E and Akt 
activation, which promotes cell growth, survival, 
and proliferation in a number of malignancies, 
including T cell NHL.47-49   

Preliminary studies, however, show that inhibition 
of mTORC1 alone leads to upregulation of Akt 
through disruption of its inhibitory influence 
on mTORC2.49  In vitro studies with everolimus 

(a first-in-class mTOR inhibitor) confirmed 
its inhibitory effect on mTORC1 and showed 
potential for efficacy in PTCL-NOS.50 This was 
confirmed in the clinical setting by Witzig et al.,51 

following their study of 16 patients with relapsed 
T cell NHL (CTCL [n=7], PTCL-NOS [n=4], 
ALCL [n=2], ENKTL [n=1], angioimmunoblastic 
T cell lymphoma [AITL, n=1], and T cell acute 
lymphoblastic leukaemia/lymphoma [n=1]).  
The group observed a 44% (7/16) ORR and a 
median PFS of 4.1 months in response to a once 
daily oral everolimus dose of 10 mg. With a  
median duration of response of 8.5 months in 
responders, proof of concept was established.51 
There are currently a number of early-phase 
trials underway testing the efficacy of second-
generation mTOR inhibitors (which target both 
mTOR complexes) alone and in combination 
for relapsed/refractory T cell NHL. Furthermore, 
small molecules have been developed that can 
target both the mTOR and PI3K enzymes.52

PROTEASOME INHIBITION  
AND IMMUNOMODULATION

Despite the wide availability of a number of 
pharmacologic agents targeting the proteasome 
and considering its integral role in regulating 
the NFκB pathway (phosphorylation and 
ubiquitination of IκB), only a limited number 
of studies have assessed their role in T cell  
NHL. Zinzani et al.53 first reported on the 
efficacy of bortezomib (a first-generation 
proteasome inhibitor) in their 2007  
Phase II study. They demonstrated a signal, 
predominantly in CTCL, with a 67% ORR that 
was sustained over 7–14 months.53 Subsequently, 
Ishida et al.54 demonstrated encouraging activity 
of lenalidomide monotherapy in adult T cell 
leukaemia/lymphoma (ATLL), which is prevalent 
in Japan, accounting for 25% of PTCL cases.  
In a Phase II study of 26 patients with relapsed 
ATLL, Ishida et al.54 observed an ORR of 42%, 
which met the study’s primary endpoint.  
This response was noted across all presentations 
of ATLL but the most encouraging response 
was noted in lymphomatous and unfavourable 
chronic presentations.54 More recently, through 
global transcriptome analysis, proteasome 
inhibition with ixazomib (a proteasome subunit 
beta type-5 inhibitor) significantly improved 
tumour response and overall survival in T cell 
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NHL xenograft models via downregulation of 
Myc and checkpoint kinase-1.55  

NUCLEAR TRANSPORTATION

The nuclear export receptor exportin 1 (XPO1) 
is a mediator of nuclear protein migration, 
including NFκB, and overexpressed in a number  
of haematological malignancies.56,57 Preclinical 
data demonstrated that inhibiting XPO1 led not 
only to an overall increase in cellular tumour 
suppressor proteins within malignant cells but 
isolated these proteins to the nucleus, promoting 
apoptosis and significantly prohibiting tumour 
cell growth and proliferation.56-58  

Selinexor is a first-in-class oral selective inhibitor 
of nuclear export. In their study of 79 patients 
with relapsed/refractory NHL, Kuruvilla et al.59 
observed an ORR of 31% (n=22), which included 
4 cases of CR. The most prevalent safety 
concerns were Grade 3–4 thrombocytopenia 
and neutropenia, which occurred in 32% and 
47% of patients, respectively. Tumour biopsies 
confirmed decreases in cell signalling pathways, 
reduced proliferation, and, most importantly, 
nuclear localisation of XPO1 cargos.59 Although  
T cell NHL patients were not included  
in this study, the pharmacodynamic results  
reported were very encouraging.59 However, the  
subsequent Australian Phase II study of single 
agent selinexor in relapsed/refractory T cell 
NHL60 was terminated early due to enrolment 
challenges (n=16 at time of study closure),  
with the results yet to be published. Despite 
this, the Singaporean National Cancer Centre 
has recently launched a Phase I trial of selinexor 
in combination with standard dose ifosfamide, 
carboplatin, and etoposide for relapsed/
refractory PTCL.61 Furthermore, in vivo studies 
using eltanexor, a second-generation selective 
inhibitor of nuclear export, have shown early 
promise, with clinical trials forthcoming.62 

THE COMMON GAMMA: JAK/STAT

The common gamma (γc) receptor-dependent 
cytokines (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) and 
their receptor targets play a critical role in T cell 
immunity. The receptors for these respective 
cytokines lack intrinsic kinase activity and,  
as such, their functionality is dependent on 

their association with JAK cytoplasmic tyrosine 
kinases. Cytokine binding to receptors leads to 
cross-JAK phosphorylation, phosphorylation 
of the intracellular cytokine receptor tail, and 
creates a docking site for STAT. Once activated, 
phosphorylated STAT translocates to the 
nucleus and acts as a transcription factor.63     
Almost all forms of T cell lymphoma have  
now been associated with disorders involving 
activation of the γc/JAK/STAT system.64-71  
It is now understood that activation of the  
γc/JAK/STAT system alone is not sufficient to 
cause abnormal T cell proliferation. For this to 
occur, the entire pathway, from cytokine receptor 
augmentation to STAT phosphorylation and 
nuclear transportation, must be activated.63  
There is growing preclinical evidence for the 
efficacy of JAK/STAT inhibitors in T cell NHL72 
and this will undoubtedly transfer into the  
early-phase clinical setting. 

AURORA A KINASE INHIBITION

Aurora A kinase is a serine/threonine kinase 
that plays an integral role in cellular mitosis by  
localising to the centrosome and regulating 
chromatid segregation from prophase to 
metaphase. While expression is limited in normal 
tissue, overexpression has been identified in a 
number of malignancies, including subsets of  
T cell NHL.73,74 Subsequently, upon development 
of the selective oral aurora A kinase inhibitor, 
alisertib, a number of early-phase studies  
were performed.75-77  

Initial results from two pivotal Phase II studies 
of relapsed/refractory lymphoma revealed an 
ORR of approximately 30%, with a promising 
signal in PTCL-NOS and transformed mycosis 
fungoides;75,76 however, these results have not 
translated into improved patient outcomes.  
As presented by O’Connor et al.,77 the interim 
analysis of the multicentre, randomised Phase II 
study of alisertib versus investigator choice 
for relapsed/refractory PTCL failed to meet 
significance and resulted in the study being 
prematurely terminated. Of the 238 patients 
randomised, the ORR of alisertib and investigator 
choice were 33% versus 43%, including a superior 
CR rate in favour of the latter.77 Despite these 
findings, the combination potential of alisertib 
remains to be explored. This result, however, 
underscores the importance of subjecting novel 
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agents to randomised trials against standard of 
care before their adoption into routine practice. 

EPIGENETIC DYSREGULATION

Gene transcription is not only dependent on a 
number of intracellular pathways but also relies 
on DNA interaction with the histone protein 
octamer, commonly known as the nucleosome. 
This interaction is largely controlled by post-
translational modification of the histone protein, 
including acetylation and methylation.78 Direct 
methylation of cytosine bases within DNA is an 
additional mechanism of transcriptional control 
that is often linked to histone modification 
patterns and these processes together  
are termed epigenetic regulation. Mutations 
of enzymes involved in post-translational 
modifications lead to aberrant DNA methylation 
and promote oncogenesis. With respect to  
T cell NHL, studies have demonstrated recurring 
mutations in TET2, isocitrate dehydrogenase 
(IDH), and DNA methyltransferase 3 (DNMT3). 
Both TET2 and IDH mutations result in increased 
DNA methylation, thus establishing a role for 
demethylating agents and histone deacetylase 
inhibition in T cell NHL.2  

Delarue et al.79 studied 19 patients mainly with 
relapsed/refractory PTCL (as first-line therapy 
for 2 patients) who were treated with the 
hypomethylating single agent 5-azacyctidine. 
Ten patients had a previous or concomitant 
diagnosis of myelodysplastic syndrome, mainly 
chronic myelomonocytic leukaemia. A 53% ORR 
was observed but 9 out of 12 patients (75%) with 
AITL responded.79  Of interest, eight patients 
with AITL who had Tet2 mutation status available 
had a mutation. A number of trials are ongoing  
using demethylating agents in combination.80

Promising early-phase data using first-generation 
histone deacetylase inhibitors (HDACi) led to 
the rapid approval of a number of agents for a  
variety of T cell NHL subtypes.81-86 However,  
single-agent activity is modest and has meant 
that while approved in the USA, European 
approval has not been forthcoming. In addition, 
randomised trials of single agent HDACi with 
standard of care have not been conducted, 
undermining confidence in their use. When faced 
with a modest activity signal as a single agent, 
focus has rightly shifted to combination therapies.  

In their Phase Ib/II study of first-line romidepsin 
plus standard CHOP, Dupuis et al.87 demonstrated 
significant responses, albeit with associated 
myelotoxicity and potential cardiac toxicity.   
The ORR of 68% (51% CR, 17% partial response), 
PFS of 57%, overall survival of 76.5%, at a 
median follow-up of 17.5 months, came at a cost,  
with two-thirds of patients experiencing at least 
one serious adverse event.87 However, given 
the promising response and survival outcomes, 
the planned Phase III trial of romidepsin plus  
standard CHOP study88 was initiated. 

The novel combination of HDACi and proteasome 
inhibitors also shows considerable promise.  
In their Phase II study of panabinostat plus 
bortezomib for relapse/refractory PTCL or  
NK/T cell NHL, Tan et al.89 reported an ORR 
of 43% (10 out of 23), with 22% (5 out of 23)  
of patients attaining a CR. The median time to 
response was 6 weeks. Myelotoxicity was once 
again identified as the major concern, with 
approximately two-thirds of patients experiencing 
Grade 3/4 haematotoxicity.89 The encouraging 
results of this study have led to second-generation 
combination therapies, with a study of romidepsin 
plus carfilzomib for relapsed/refractory PTCL 
currently recruiting in the UK.90 This study 
is also investigating the potential utility of  
HR23B protein expression as a predictive  
biomarker of response. HR23B was identified  
in a genome-wide loss-of-function screen 
to identify genes involved in the sensitivity 
of tumour cells to HDACi.91 The protein has 
an important role in shuttling ubiquitinated 
proteins to the proteasome.92 Retrospective 
studies have identified an association between 
HR23B expression and response of cutaneous 
T cell lymphoma.93 Prospective confirmation is 
required before its use as a predictive biomarker  
is established.

FOLATE METABOLISM

Neoplastic T cell proliferation depends on 
DNA and RNA synthesis, which require folate  
metabolism.94  Pralatrexate is an antineoplastic 
folate analogue that directly targets both 
cellular folate transport and metabolism through 
enzyme inhibition, disrupting DNA and RNA 
synthesis.95 Early in vitro studies demonstrated 
the cytotoxic activity of pralatrexate in a  
number of lymphoproliferative disorder cell lines 
and xenograft models.96-98
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The pivotal PROPEL study,99 a Phase II single-
arm, open-label study, enrolled 115 patients 
with relapsed or refractory PTCL. Of the 109 
evaluable patients, the ORR was 29% (n=32),  
which included 11% CR (n=12) and 18% partial 
response (n=20). The median duration of  
response was 10 months, with a median PFS 
and OS of 3.5 and 14.5 months, respectively.99  
The early durable responses observed led to 
the rapid approval of this agent in the USA for 
relapsed/refractory PTCL. Similar to with HDACi, 
no randomised trial was performed and a 
European license has not yet been granted. 

The recent Phase I/II study of pralatrexate in 
Japanese patients supported the PROPEL 
data.  Following an identical dosing regimen,  
the authors reported an ORR of 45% among 
the 20 evaluable Japanese patients.99,100  

Although both studies demonstrated high 
rates of mucositis, this may be mitigated  
by concomitant leucovorin administration, thus 
enhancing the safety of this combination.101 

The efficacy of pralatrexate in relapsed/refractory 
disease has led investigators to explore its 
combination potential. Shustov et al.102 recently 
presented preliminary data from their Phase I 
dose-escalation study of upfront pralatrexate 
30 mg/m2 per day for 1–8 days, plus standard 
dose CHOP.  Of the 27 evaluable patients, the 
researchers observed an investigator-assessed 
ORR and CR of 89% and 67%, respectively.  
The only treatment-related Grade >3 adverse 
events noted were neutropenia (n=4).  
The maximum tolerated dose of pralatrexate 
was not reached.102 Although preliminary, the  
relative safety of pralatrexate plus CHOP is 
reassuring and no doubt the efficacy of this and 
other similar novel combinations will be explored  
further with planned Phase II and III studies. 

FOLLICULAR HELPER  
T CELL DERIVATION

A subset of CD4+ T cells, follicular helper T (Tfh) 
cells, play a critical role in physiologic immunity.103 
Localised in lymphoid organs, Tfh cells have 
features of both central and effector memory 
T cells104 and, in comparison to normal B and  
T cells, Tfh express high levels of inducible 
costimulator (ICOS) and chemokine receptor 5.  
Through the influence of ICOS activity, Tfh cells 

undergo differentiation, with a high affinity 
for expression of BCL6, IL-24, IL-4, CXCL13, 
and PD1, in addition to ICOS and chemokine  
receptor 5.103,105-108 ICOS ligand activation is  
also closely linked with NFκB regulation.109 Thus, 
Tfh cells are a key effector cell at the interface 
between innate immunity and normal B and T cell 
maturation, with dysregulation leading to both 
autoimmune dysfunction and lymphomagenesis. 

Gene expression studies of malignant T cells in 
AITL have established a striking similarity to Tfh 
cells, sufficiently supporting their role as the 
cell of origin in AITL. This is further supported 
by the biochemical and clinical features of 
AITL, including autoimmune dysregulation and 
enhanced B cell activation. Subsequent targeted 
sequencing studies have demonstrated recurrent 
mutations of TET2, DNMT3A, and IDH2, and 
loss of RHOA (coding for GTPase Rhoa) in AITL  
of Tfh cell origin.110-112 With this knowledge,  
Tfh cells have also now been defined as the  
cell of originin subsets of other T cell NHL,  
including PTCL-NOS and CTCL. 

With respect to therapeutic implications, 
establishing Tfh cell derivation by pathologic 
and genetic analysis may select for tumour 
types that are sensitive to direct antibodies that 
target highly expressed antigens (e.g., ICOS, 
PD1, CXCR13). These tumours may also be  
susceptible to NFκB pathway (also regulated by 
ICOS ligand activation) targets, demethylating 
agents, and histone deacetylase inhibition.   
Further studies are required to establish the  
true impact of Tfh cell derivation in T cell NHL.  

CONCLUSION

As it stands, the majority of patients presenting 
with T cell NHL will not successfully achieve 
a complete remission with current first-line 
standard of care chemotherapy, subsequently 
experiencing a relapsing/remitting course and 
eventually succumbing to their disease.113-116  
Of the small proportion of patients who do  
achieve a favourable response, there is no 
consensus on consolidation approaches and 
those unsuitable for transplantation are likely 
to experience disease relapse.117-119 There is an  
urgent and unmet clinical need to improve the 
limited prognosis faced by these patients.  
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