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INTRODUCTION 

Joint conditions have now become a major 
public health problem and cause pain, 
functional impairment, and physical disability.  
Joint conditions bring patients physical 
discomfort and high financial expenditure.  
In the past, there was no effective solution to  
joint conditions. Patients may require surgery or 
face an undiagnosed condition. Until recently,  
cell-based regenerative therapy appeared 

to be a promising approach to treat joint 
diseases; mesenchymal stem cells (MSC) have 
demonstrated a positive impact on tissue repair 
and regeneration.1 MSC have the therapeutic  
potential to treat bone and joint diseases due 
to their multipotent differentiation abilities,  
the secretion of a variety of immune modulatory 
substances, and cell-to-cell interactions, 
which lead to its antifibrotic, anti-apoptotic,  
proangiogenic, and immunosuppressive 
properties.2 MSC have been tested in several 
clinical trials for the treatment of different 
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joint conditions, such as osteogenesis 
imperfecta, osteoarthritis (OA), bone erosion, 
osteonecrosis, and bone fracture.3 Here, the 
authors review the current knowledge of the 
therapeutic MSC mechanisms of action and the 
applications of these mechanisms in the field  
of autoimmune arthritis.

CHARACTERISTICS AND FUNCTIONS 
OF MESENCHYMAL STEM CELLS  

MSC were first recognised as mononuclear and 
plastic cells in a monolayer culture of guinea 
pig bone marrow by Friedenstein et al. in 1968.4  
MSC are multipotent adult stem cells that are 
able to differentiate into mesengenic lineages 
such as cartilage, bone, fat, and muscle.  
MSC can be isolated from mesodermal tissues, 
such as bone marrow, synovium, cartilage, fat, 
and muscle, but also in endoderm (such as the 
thymus and the liver) and ectoderm (such as skin, 
dental pulp, and hair follicle) derived tissues.5-7 
Currently, the majority of research looks at the 
therapeutic effect of bone marrow-derived MSC.

MSC are nonphagocytic and have a  
fibroblast-like morphology with numbers being 
limited in human tissues. MSC lack specific 
markers; therefore, MSC are still characterised 
on the basis of morphology, plasticity,  
self-renewal, and immunophenotype, which is 
a combination of cell markers, including CD29, 
CD49, CD51, CD73, CD90, CD105, STRO1, and 
HLA Class I-positive and CD14, CD11b, CD34, 
CD31, and CD45-negative. The optimal markers 
for selection are debated frequently: leukaemia 
inhibitory factor, Wnt ligands, fibroblast growth 
factors (FGF), other growth factors, and a variety 
of other cytokines, including IFN-γ, have been 
involved in maintenance of the MSC phenotype.8-10 
MSC should meet a minimum criteria according 
to the International Society of Cellular Therapy 
(ISCT) recommendations, including surface 
markers CD73, CD90, and CD105-positive  
(≥95% expression); haematopoietic markers CD34, 
CD45, CD14 or CD11b, CD79a, or CD19-negative 
(≤2%); HLA Class II molecules absence; adhesion  
to plastic; and the potent of differentiation into 
three kinds of cells (chondrogency, osteogenic,  
and adipogenic phenotypes).11

Figure 1: Mechanisms of mesenchymal stem cells therapy for bone repair and immune system.

EV: extracellular vesicles; IDO: indoleamine 2,3-dioxygenase; M1: proinflammatory macrophage;  
M2: anti-inflammatory macrophage; MSC: mesenchymal stem cells; NK: natural killer; PGE2: prostaglandin  
E2; tDC: tolerogenic dendritic cells; Tfh: follicular T helper cells; Th: T helper cell; T reg: regulatory T cells.
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MSC could improve native cell viability, 
proliferation, and reduce apoptosis. These effects 
of the MSC population are achieved through 
the secretion of paracrine growth factors and 
cytokines; direct cell–cell interactions (tunnelling 
nanotubes); and release of extracellular vesicles, 
which contain peptides, mRNA, and microRNA. 
MSC are able to produce soluble anti-inflammatory 
mediators, such as indoleamine 2, 3-dioxygenase 
(IDO), prostaglandin E2 (PGE2), transforming 
growth factor (TGF)-β, and IL-6, which mediate 
MSC immunomodulatory effects.12,13

MESENCHYMAL STEM CELLS  
AND THE IMMUNE SYSTEM 

It has been reported that MSC inhibit the innate 
immune response. The functions of natural killer 
(NK) cells and neutrophils could be suppressed 
by MSC.14 MSC are able to interfere with dendritic 
cell (DC) maturation and generate tolerogenic 
(t)DC by inhibiting the toll-like receptor  
activation.14,15 The production of cytokines was 
inhibited by lipopolysaccharide-activated DC 
co-cultured with MSC, relying on paracrine  
mediators acting on the NFκB pathway,  
which was upregulated by toll-like receptor-4 
induced DC activation. On the other hand, 
the differentiation of macrophages toward a 
more anti-inflammatory phenotype (M2) could 
be induced by MSC.16 IFN-γ secretion and the 
cytotoxic activities of NK cells were suppressed 
by MSC in vitro. In addition, suppression of NK 
cell function was mediated by MSC contacting 
with NK cells directly and via the releasing 
PGE2. Bone marrow (BM)-derived MSC promote  
IL-10-producing M2 macrophage generation 
that relay the cell–cell interactions and soluble 
mediator production, such as IDO and PGE2.17-19 

MSC could also produce survival factors  
(e.g., IL-6, IFN-β, and granulocyte macrophage 
colony-stimulating factor), which increase the 
lifespan of leukocytes.

In addition to actions on the innate immune 
system, MSC also influence the adaptive 
immune response. Several studies have shown 
that the survival of T cells can be promoted by 
human MSC, which maintain T cells in a resting 
state by suppressing cell proliferation and  
proinflammatory cytokines production, such as 
IFN-γ.20 On the other hand, numerous studies  
have shown the ability of MSC to promote 

regulatory T cells polarisation as an important 
mechanism by which MSC inhibit autoimmune 
inflammation. It was also reported that MSC 
direct the conversion of Th17 cells into regulatory 
T (T reg) cells (IL-17A+, FOXP3+ T cells),  
which produce IL-10. In vitro co-culture of  
human MSC with peripheral blood mononuclear 
cells induces the expansion of the CD4+, CD25+, 
and FOXP3+ T reg population. The mechanisms 
by which MSC effect T cells occurs via the  
production of soluble mediators, such as PGE2, 
hepatocyte growth factor, TGF-β, IL-10, and 
IDO; MSC also act via cell–cell contact.21-23 All of 
the effects MSC produce provide a favourable 
environment for tissue repair. Different results 
were observed following MSC regulation of B cell 
function and proliferation. Most of the studies 
reported that MSC inhibited B cells proliferation, 
differentiation, cytokines production, and 
antibody production;24 however, some studies 
have shown that BM-MSC could promote 
naïve B cells proliferation, differentiation, and  
antibody secretion.

MSC secrete and function via extracellular 
vesicles (EV), including exosomes, microvesicles, 
and apoptotic bodies, alongside cell–cell 
signalling, which is a promising approach 
for immunomodulation therapy and tissue 
regeneration. The most common vesicles found  
in extracellular fluids are microvesicles and 
exosomes. The diameters of microvesicles 
range from 50 nm to 1 μm, which are shedding 
vesicles generated from plasma membranes.  
Exosomes are secreted by most cells as  
cell-derived vesicles of endocytic origin in culture 
systems. The mean size of exosomes ranges 
between 30 and 100 nm in diameter. Apoptotic 
bodies are released from apoptotic cells and 
range from 50–5,000 nm in diameter.25,26 How the 
effects of these MSC-derived EV are mediated is 
still not clear, but it represents a novel strategy 
for future therapy. Microvesicles have been 
reported to include cytoskeletal components 
(such as actin, actin-binding proteins, tubulin, 
and myosin), enzymes (such as alpha-enolase 
and triosephosphate isomerase), membrane 
molecules (such as HLA-I and HLA-II antigens), 
proteins involved in vesicle generation and 
trafficking, and proteins involved in apoptotic 
bodies and cell debris.25 Therefore, EV from 
MSC express their surface markers, such as 
CD29, CD73, CD19, and CD105, and cell adhesion  
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molecules. Inside EV, there are many kinds of 
molecules, including enzymes, nuclear receptors, 
cytokines, lipid subsets, miRNAs, and other RNA 
(e.g., viral RNA and fragments of tRNA). It was 
reported that EV from MSC could inhibit the 
proliferation of B cells and NK cells. The effect 
of EV-mediated immunomodulation relies on the 
ability of different immune cells to take up these 
microparticles. The role of EV on T cells has not been 
clearly demonstrated. The immunosuppressive 
effects of BM-MSC are enhanced by IFN-γ and 
TNF-α, as well as an increase in the production 
of ICAM-1 and EV.27 EV from murine MSC were 
reported to inhibit the proliferation of CD8+ 
T cells and B cells. In addition, EV of MSC  
increased the T reg cell population. EV released 
by MSC can induce the transition and proliferation 
of the anti-inflammatory M2 phenotype 
from the proinflammatory macrophages.28,29  
The mechanisms of MSC therapy for bone repair 
and immune system are presented in Figure 1.

MESENCHYMAL STEM CELL THERAPY 
IN AUTOIMMUNE ARTHRITIS 

Early studies have shown that MSC therapy 
suppressed graft versus host disease.30 Currently, 
most trials focus on cardiac syndromes and 
spinal cord injury for the reparative capabilities 
of MSC.31,32 In other respects, researchers studied 
the efficacy of MSC in autoimmune diseases due 
to their immunosuppressive effects. Among the 
autoimmune diseases causing joint conditions, 
OA and rheumatoid arthritis (RA) are the  
most common.

Mesenchymal Stem Cell for  
Treatment of Osteoarthritis 

OA is the most common rheumatic disease,  
with progressive loss of normal joint function.  
OA is characterised by the degeneration of 
articular cartilage, leading to joint pain, stiffness, 
and loss of function. The most frequently affected 
joints are the knees, joints in the hands, and 
the spine. In addition, OA involves other joint 
problems, such as alterations of the meniscus, 
hyperosteogeny, and intermittent inflammation 
of synovium. Disability caused by OA is the fastest 
growing major health condition in the world and 
is expected to be the fourth greatest disease 
impacting on worldwide health by 2020.33

Current treatments for OA involve ameliorating 
pain and inflammation; physiotherapy and 
lifestyle regulations have been shown to slow 
the progression of disease, but has seen limited 
success.34 When conservative forms of therapy 
are exhausted, patients may need surgery.  
MSC therapy acts via two main pathways, either 
by preventing the degradation of cartilage 
through the secretion of bioactive factors, or by 
differentiating to become chondrocytes, which 
may contribute to cartilage repair. The availability 
of a large number of MSC and their potential of 
differentiating to become chondrogenic in vitro 
has made MSC the most promising cell source 
for cartilage repair. It has been reported that MSC 
loaded on a 3D scaffold undergo chondrogenic 
differentiation in appropriate culture and could 
be used for cartilage repair in replacement 
tissue.35 In an experimental model of OA,  
transplantation of a scaffold seeded with  
BM-MSC significantly improved the regenerated 
tissue. In addition, MSC as a cell therapy have 
been used directly for OA cartilage repair 
in the articular cavity.36 It has been shown 
that MSC can migrate and engraft onto  
multiple musculoskeletal tissues and undergo 
environmental specific differentiation. It was 
reported that little loss of proteoglycans and 
osteophyte formation were observed in the 
animals treated with MSC. Co-culture of juvenile 
articular chondrocytes with MSC resulted in 
competent chondrogenic differentiation.37-39

OA is also associated with progressive and 
sometimes severe synovium inflammation. 
Therefore, the cell therapy approach to control 
such an inflammatory environment is needed.  
MSC have been shown to regulate the immune 
system, so are suitable for this purpose. MSC 
have either direct or indirect interactions 
with immune cells and may secrete soluble 
factors that can affect their local environment.  
Co-culture of MSC with chondrocytes significantly 
downregulate several proinflammatory cytokines 
production. MSC could inhibit the secretion of  
IL-1β, IL-6, and IL-8 by chondrocytes and synovial 
cells, which were isolated from the joints of OA 
patients, relying on the secretion of PGE2 by 
MSC. Other research reported similar results.40-44  
The expression of IL-1β, MMP-1, and MMP-13 
was decreased by MSC in OA synoviocytes.  
In addition, a variety of factors were found 
in the secretome of MSC, such as TGF-β1, 
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thrombospondin-2, insulin growth factor-1, 
and stromal-derived factor-1, which could 
increase chondrogenesis in vivo and may have a  
therapeutic effect for cartilage regeneration.40-44 

Many of the bioactive factors secreted by MSC are 
now being identified, which include cystokines 
and growth factors, as well as extracellular matrix 
molecules. MSC exosomes induce high levels 
of IL-10 and TGF-β1, and reduce levels of IL-1β,  
IL-6, TNF-α, and IL-12p40 in monocytes in vitro.  
It has been observed that MSC exosomes induce 
T reg production in mice, which indicated that 
the MSC exosome had an immunomodulatory 
effect.45 On the other hand, miR-92a could 
mediate the effect of MSC exosomes in treating 
OA by targeting noggin-3 to induce proliferation 
of chondrocytes as well as matrix synthesis by  
the PI3K/AKT/mTOR pathway.46

Articular injection of MSC inhibits fibrosis and 
apoptosis of chondrocytes, stimulates the 
proliferation of chondrocytes, and increases 
extracellular matrix synthesis. The anti-fibrotic 
effect of MSC mostly relies on the secretion of 
hepatocyte growth factor.47 Additionally, MSC 
decrease the apoptotic death of chondrocytes, 
which were induced by camptothecin.48

In humans, several trials have started to test the 
efficacy of MSC therapy for treatment of OA. 
A case report has demonstrated cartilage and 
meniscus repair, identified through MRI, as well 
as improved range of motion and reduced visual 
analogue scale score after injection of autologous 
BM-MSC into the knee of a OA patient.49  
In addition, in 18 patients with OA, the safety, 
function, and pain were measured at 12 months  
after BM-MSC transplantation. The safety is  
reliable, and function is improved, which  
continued at 30-month follow-up.50 Currently, 
a Phase I/II trial is evaluating the effect of MSC 
compared with hyaluronan in patients undergoing 
meniscectomy to prevent subsequent OA.51

Mesenchymal Stem Cell for Treatment 
of Rheumatoid Arthritis 

RA is a systemic autoimmune disorder 
characterised by aberrant leukocyte infiltration, 
persistent inflammation of synovium, and 
proteases within the joint, which ultimately 
leads to cartilage and bone destruction.  
Treatment strategies mainly aim to suppress 
autoimmune synovium inflammation by 

using disease-modifying antirheumatic drugs  
(DMARD) and new therapies, such as biological 
agents. Even in clinical remission, cartilage 
damage and bone erosion may already exist or 
continue to progress.

MSC-induced immunomodulation and 
regeneration of cells made it a potential therapy 
for the management of RA. Therefore, unlike in 
the treatment of OA, the use of MSC in RA has 
primarily focussed on immune modulation.52  
It has been shown that injection of human 
MSC in collagen-induced arthritis (CIA) mice 
decreased granulocyte macrophage colony-
stimulating factor expressing CD4+ T cells in 
the blood and spleen, which is important in RA 
pathophysiology. In addition, MSC could induce a 
regulatory phenotype from Th17 cells by MSC in 
CIA mice and reduce the ratio of Th1:Th17 cells.  
The serum level of TNF-α was significantly 
decreased by MSC in CIA mice. MSC inhibited 
follicular Th cell differentiation in CIA mice,  
and suppressed their capacity of supporting  
B cells differentiation in a co-culture system.  
MSC inhibition B cells may be dependent on 
regulating T cells. The indirect effects of MSC 
on B cells may rely on suppressing follicular  
Th cells.53-55

MSC inhibit osteoclast-mediated bone  
resorption, which leads to bone erosion via the 
induction of T regs, and reduced the production 
of inflammatory cytokines, which promote 
osteoclastogenesis. It has been reported that 
MSC inhibits osteoclastogenesis via production 
of osteoprotegerin or by interactions with  
osteoclast precursors, through CD200 and 
CD200 receptor interactions.56 A more recent 
study57 suggested that injection of MSC to 
CIA mice prevented bone loss by decreasing 
osteoclast precursors in bone marrow, although 
the mechanisms remain unclear.

The EV produced by MSC have been 
shown to mediate tissue regeneration and 
immunomodulation as a new way to treat RA.  
EV secreted by MSC can mirror the effect of MSC. 
Studies have indicated that MSC-EV can reduce 
arthritis scores and pathological changes in CIA 
mice by decreasing plasmablast population and 
increasing IL-10 secretion of regulatory B cells.27

Environmental factors affect the function of 
MSC. Studies have shown the addition of TNF-α 
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