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Association of a Biomarker-Based Frailty Index  
with Telomere Length in Older American Adults:  
Findings from the National Health and Nutrition 

Examination Survey 1999–2002

INTRODUCTION

The physiological mechanisms underlying 
the link between telomere shortening and 
ageing-related health conditions have not been  

completely elucidated. To this end, studies 
have attempted to examine the association 
between telomere length and ageing-related 
parameters. One parameter that has received 
considerable attention is frailty, a clinical  
construct characterising and quantifying the 
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cumulative burden of ageing-related health 
deficits. Frailty is a physical state that represents 
the constellation of health deficits that arise due 
to gradual loss of the body’s ability to recover 
from exposure to biological stressors.1 With no 
existing gold standard, the commonly used 
operational measures of frailty are the frailty 
phenotype (FP) and the frailty index (FI). These 
measures are typically constructed by tallying 
clinical symptoms of ageing (e.g., disease, 
disabilities, and functional impairments), with 
higher scores indicating a higher frequency of 
age-related health conditions.2 So far, studies 
examining the relationship between telomere 
length and clinical frailty measures have found  
no association,3-10 leaving open the question 
of how cellular senescence (of which telomere 
length is an indicator) leads to the clinical deficits 
seen among frail individuals.

Recently, Howlett et al.11 introduced a new 
frailty measure that is derived solely from 
laboratory test and blood pressure abnormalities.  
This index (a lab-based FI named ‘FI-LAB’) is 
constructed by computing the proportion of 
laboratory test biomarkers and physiological 
parameters for which an individual falls outside  
of the clinical reference range. FI-LAB focusses  
on subclinical (biological and physiological) 
rather than clinical deficits, such as disabilities  
and functional impairments. It also has the  
benefit of being less subjective than FI and FP, 
which rely heavily on self-reporting.12 Studies  
have shown FI-LAB correlates well with clinical 
frailty measures and demonstrates strong 
predictive accuracy for mortality, frequency of 
hospital visits, polypharmacy, and self-assessed 
health status.11-14 A commonly observed finding 
in these studies is that, in predictive models 
containing both FI-LAB and clinical FI, both 
frailty measures showed significant association 
with ageing endpoints, suggesting they provide 
independent information about frailty. Due to 
its focus on subclinical and preclinical deficits, 
FI-LAB provides additional information beyond 
what the more commonly used clinical frailty 
measures offer. 

In this article, the authors examine the  
association of the novel frailty measure FI-LAB 
with leukocyte telomere length (LTL) among a 
randomly selected sample of the USA general 
population aged ≥60 years. Furthermore,  
they shed light on the relationship between  

FI-LAB and LTL by identifying the individual 
biomarkers driving the observed association.  
For comparison, investigation of the association 
of LTL with the most common operationally  
used clinical measures FP and FI is included. 

METHODS

Study Sample

The National Health and Nutrition Examination 
Survey (NHANES) is an annual survey evaluating 
the health status of the USA population.15  
In this study, the authors restricted their focus 
to data collected in the 1999–2000 and 2001– 
2002 NHANES cycles, as these are the only 
NHANES cycles in which telomere length was 
measured. In these cycles, there was a total 
of 3,706 subjects aged ≥60 years. Subjects 
with missing values on telomere length  
measurements, covariates, or variables required 
for calculation of the frailty indices were  
excluded. This left a sample of 1,890 subjects.

Leukocyte Telomere Length

A telomere length assay was performed 
for NHANES 1999–2002 participants aged  
≥20 years who had blood collected for 
DNA purification. Quantitative PCR was 
used to measure telomere length. To reduce  
measurement error, each sample was 
assayed three times on three different days, 
and telomere length measurements were  
standardised by dividing by standard reference  
DNA values (T:S ratio). The mean and standard 
deviation of the T:S ratios across the three 
measurements were computed for each sample.  
The full details of this procedure have been  
described previously.16 

Measures of Frailty

Frailty Phenotype

FP, developed by Fried et al.,17 is based on an 
approach that considers frailty as a syndrome, 
the severity of which can be quantified by  
counting the presence of five key symptoms: 
unintentional weight loss, weakness (low grip 
strength), lack of endurance (exhaustion), slow 
gait speed, and low physical activity (relative to 
one’s peers). The resulting measure (a simple count  
ranging from 0–5) is widely known as the FP.  
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Table 1: Computation of frailty index.

Deficits Coding

Comorbidities

Ever had stroke? 0=No, 1=Yes

Ever had thyroid condition? 0=No, 1=Yes

Ever had cancer? 0=No, 1=Yes

Ever had heart attack? 0=No, 1=Yes

Ever had heart disease? 0=No, 1=Yes

Ever had angina pectoris? 0=No, 1=Yes

Ever had arthritis? 0=No, 1=Yes

Ever had osteoporosis? 0=No, 1=Yes

Ever had broken hip? 0=No, 1=Yes

Ever had diabetes? 0=No, 1=Yes or Borderline

Ever had cataract operation? 0=No, 0.5=One eye, 1=Both eyes

Ever told you had weak/failing kidneys? 0=No, 1=Yes

Ever had high blood pressure? 0=No, 1=Yes

Signs/symptoms

Heart rate at rest (bpm) 0: 60–99, 1: <60 or ≥100

Systolic blood pressure (mmHg) 0: <120, 0.5: 120–139, 1: ≥140

Cough regularly 0: No, 1: Yes

Urinary incontinence 0: No, 1: Yes

Self-rated vision 0: Excellent, 0.25: Good, 0.5: Fair, 0.75: Poor, 1: Very poor

Difficulty seeing steps/curbs in dim light 0: No difficulty, 0.5: Little/moderate difficulty, 1: Extreme difficulty

Self-rated hearing 0: Good/excellent, 0.5: Little/moderate trouble, 1: Lot of trouble/deaf

Confusion/inability to remember things 0: No, 1: Yes

Function

Difficulty using fork and knife 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty dressing yourself 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty getting in/out of bed 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty standing up from armless chair 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty managing money 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty preparing meals 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty standing for long periods of time 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty stooping, crouching, kneeling 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty grasping/holding small objects 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty lifting or carrying 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty pushing or pulling large objects 0: No difficulty, 1: Some or much difficulty/unable to do

Difficulty attending social events 0: No difficulty, 1: Some or much difficulty/unable to do

Laboratory values

Homocysteine (μmol/L) 0: <8, 0.5: 8–15, 1: >15

Folate (nmol/L) 0: 4.5–29.5, 0.5: 29.6–45.3, 1: <4.5 or >45.3

HbA1c (%) 0: <5.7, 0.5: 5.7–6.4, 1: >6.4

Red blood cell count (106 cells/μL) 0: 3.93–5.69, 1: <3.93 or >5.69

Haemoglobin (g/dL) 0: 12.1–17.2, 1: <12.1 or >17.2

Red blood cell distribution width (%) 0: 11.5–14.5, 1: <11.5 or >14.5 

Lymphocyte count (%) 0: 20–45, 1: <20 or >45

Neutrophil count (%) 0: 40–60, 1: <40 or >60

Other

Medications 0: 0–3, 0.5: 4–7, 1: ≥8

Self-reported health 0: Excellent, 0.25: Very good, 0.5: Good, 0.75: Fair, 1: Poor

Health compared to 1 year ago 0: Better/same, 1: Worse

Frequency of healthcare use 0: 0–3, 0.5: 4–9, 1: ≥10

Overnight hospital stays 0: 0, 0.5: 1–2, 1: ≥3
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Since not all the items comprising FP were 
measured in NHANES, this study used a modified 
version of the FP introduced by Wilhelm-Leen  
et al.18 and used in multiple studies.18-21

Frailty Index

FI is based on an approach that conceptualises 
frailty as the accumulation of functional and 
health deficits resulting from a diminishing 
ability to maintain homeostasis.22 Under this 
deficit accumulation model, frailty is measured 
by computing the proportion of deficits  
present in an individual out of several potential 
deficits spanning multiple domains of health: 
disability, functional impairment, and disease.23 
The original version of FI, introduced by  
Rockwood et al.,23 was constructed from 70  
clinical deficits. Recently, a 46-item variant of  
the FI was created for the NHANES based on 
data available from participants.24 In this study, 
the authors used a modified version of this  
FI (Table 1).

Lab-Based Frailty Index

As discussed, the novel frailty measure FI-LAB 
focusses on subclinical and preclinical deficits 
as determined by standard laboratory tests 
and biomarkers and physiological parameters  
(e.g., cholesterol, creatinine, and glucose 
levels). FI-LAB is based on the same deficit 
accumulation model that underlies the FI 
but focusses entirely on subclinical deficits 
(i.e., abnormalities on standard laboratory  
biomarkers or physiological parameters). FI-LAB 
is computed as the proportion of biomarkers  
and physiological parameters for which an 
individual falls outside of the clinical reference 
range, as proposed in a recent study by Howlett  
et al.11 Only 21 out of 23 biomarkers and 
physiological parameters used in the study 
were available in the NHANES 1999–2002  
database.11 Therefore, the present study used 
21 biomarkers to calculate each individual’s  
FI-LAB score. These biomarkers include  
albumin, aspartate aminotransferase, systolic 
blood pressure, diastolic blood pressure, calcium, 
creatinine, glycohaemoglobin, haemoglobin, 
mean corpuscular volume (MCV), alkaline 
phosphatase, phosphate, potassium, protein, 
sodium, urea nitrogen (serum), white blood 
cell count, folate, red blood cell folate, thyroid-
stimulating hormone, thyroxine, and vitamin B12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
See Table 2 for details of the reference ranges  
for each biomarker.

Covariates

Analyses were adjusted for age, sex, race and 
ethnicity, socioeconomic status, education, and 
tobacco exposure. Age, sex, race, and educational 
attainment were determined from survey 
questionnaire responses. Poverty:income ratio 
(annual family income to the poverty threshold) 
was used as an indicator of socioeconomic status. 
Levels of cotinine, a stable metabolite of nicotine, 
were used as a proxy for tobacco exposure.15 

Table 2: Computation of FI-LAB.*

*The original study introducing the lab-based frailty 
index FI-LAB (Howlett et al.11) used 23 biomarkers, 
but only 21 of these were available in NHANES 
1999–2002 (these 21 biomarkers are listed above). The 
two missing biomarkers were free thyroxine (T4) and 
syphilis antibody levels.

AST: aspartate aminotransferase; BP: blood  
pressure, NHANES: National Health and Nutrition  
Examination Survey; RBC: red blood cell; SGOT: serum  
glutamic-oxaloacetic transaminase; TSH: thyroid-
stimulating hormone.

Parameter Reference values

Albumin (g/dL) 3.20–4.50

AST/SGOT (U/L) 8.00–33.00

Systolic BP (mmHg) 90.00–140.00

Diastolic BP (mmHg) 60.00–90.00

Calcium (mg/dL) 9.00–10.85

Creatinine (mg/dL) 0.60–1.20

Glycohaemoglobin/HbA1c (%) <6.50

Haemoglobin (g/dL) 3.20–4.50

Mean corpuscular volume (fL) 80.00–96.00

Alkaline phosphatase (U/L) 20.00–130.00

Phosphate (mg/dL) 2.30–4.71

Potassium (mEq/L) 3.80–5.00

Protein [total] (g/dL) 6.00–7.80

Sodium (mEq/L) 136.00–142.00

Urea nitrogen (serum) (mg/dL) 8.00–23.00

White blood cell count (SI) 1.80–7.80

Folate (nM) 11.00–57.00

Folate, RBC (nM) 376.00–1,450.00

TSH (μU/L) 0.50–5.00

Thyroxine [T4] (nM) 71.00–161.00

Vitamin B12 (pg/L) 118.00–701.00
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Statistical Analysis

To examine the association of the three frailty 
measures with LTL, multiple linear regression 
(MLR) was used. LTL (expressed as mean T:S 
ratio) was natural log-transformed and treated 
as the dependent variable in each model, 
with a frailty measure as an explanatory or  
independent variable. 

Two MLR models were fit for FI, one in which 
FI was treated as a continuous measure,  
as recommended by its formulators,24 and one 
treating it as a categorical variable. In the latter 
model, FI categories were defined according  
to the frailty classifications:25 FI≤0.10 (non-frail), 
0.10<FI≤0.21 (vulnerable), 0.21<FI≤0.45 (frail), 
and FI>0.45 (most frail). In both FI models,  
LTL was treated as the outcome/dependent 
variable, while FI was treated as the explanatory/
independent variable. Two MLR models were 
fit for FP, one in which FP was treated as  
continuous (i.e., symptom count ranging from 
0–5) and another treating FP as categorical 
(FP=0 [non-frail], FP=1 or 2 [pre-frail], FP=3,  
4, or 5 [frail]). An MLR model was fitted  
to examine the association between FI-LAB 
and LTL, in which FI-LAB was treated as a  
continuous variable. 

In secondary analyses, the authors evaluated the 
LTL to FI-LAB association to identify individual 
FI-LAB biomarkers statistically correlated with 
telomere length. For each of the 21 biomarkers 
comprising the FI-LAB, a covariate-adjusted  
MLR model was used with LTL as the dependent 
variable and the biomarker (dichotomised  
version) as the independent variable. The 
dichotomised version of each biomarker was 
derived by assigning a value of 0 to subjects  
falling within normal ranges (as defined in  
Table 2) and a value of 1 for subjects with 
abnormal values of the biomarker (note that, 
for each subject, summing these binary values  
across all biomarkers yields the subject’s FI-LAB).

All the above models were adjusted for age, 
sex, race, and ethnicity (white, black, Hispanic, 
and other), education (educated to less than 
high school level, and educated to high school 
level or above), poverty:income ratio (treated 
as continuous), and serum cotinine levels 
(natural log-transformed). All statistical analyses 
were carried out using R statistical software  
(version 3.4.0, Vienna, Austria).26 

RESULTS

The mean age of the analytic sample (n=1,890) 
was 70.8 years (standard deviation: 7.7 years).  

Table 3: Covariate-adjusted coefficient estimates for frailty measures.

For categorical versions of frailty index and frailty phenotype, the ‘non-frail’ category was selected as the baseline  
or reference level.

*Maximum likelihood estimate of coefficient corresponding to frailty variable. 

NA: not applicable; SE: standard error of beta coefficient estimate.

 Beta* SE p value
FI-LAB (continuous) -0.150 0.053 0.006
Frailty index (continuous) 0.030 0.050 0.505
Frailty index (categorical)
       0.00≤FI≤0.10 (non-frail) Reference NA NA
    0.10<FI≤0.21 (vulnerable) -0.020 0.015 0.182
    0.21<FI≤0.45 (frail) -0.010 0.016 0.503
    0.45<FI≤1.00 (most frail) 0.030 0.032 0.401
Frailty phenotype (continuous) -0.0007 0.006 0.898
Frailty phenotype (categorical)
    FP: 0 (non-frail) Reference NA NA
    FP: 1–2 (pre-frail) -0.010 0.011 0.248
    FP: 3–5 (frail) 0.010 0.022 0.529
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This sample was 48% female and the breakdown  
of race and ethnicity was 62% white, 14% black, 
and 22% Hispanic. In the sample, 61%  of 
participants  were educated to high school level 
or above, and the median poverty:income ratio 
was 2.4.

For FI-LAB, the mean score was 0.24, with a 
range of 0.05–0.63. The mean FI score was 0.21, 
with an observed range of 0.01–0.78. For FP,  
~61% subjects in the analytic sample had a score 
of 0 (non-frail). Approximately one-third of  
subjects had scores in the 1–2 range (pre-frail),  
and only ~6% had scores of ≥3 (frail). The 
mean T:S ratio in the analytic sample was 0.9.  
To transform the unitless T:S ratio to base  
pair units, the formula (3274+2413[T/S])16 was 
used, giving ~5,446 base pairs as mean LTL in  
this sample. 

The relationship between FP and FI in the 
analytic sample was also summarised. In line with 
what has been previously reported,24 FP and FI 
showed good correlation (Spearman ρ=0.56 
[p<0.0001]). For FL and FP, the Spearman  
ρ=0.14 (p<0.0001). For FI and FL, Spearman  
ρ=0.253 (p<0.0001). 

MLR models fit to examine the association 
between each frailty measure and telomere 
length are summarised in Table 3, which 
provides coefficient estimates (and standard 
errors) and p values. Each coefficient estimate 
represents the (covariate-adjusted) effect of a 
frailty measure on LTL. Neither FP nor FI showed 
significant associations with LTL; however,  
FI-LAB demonstrated a significant association 
with telomere length (p=0.0056). A 0.1 increase 
in FI-LAB leads to a 0.015 decrease in the mean  
T:S ratio which translates to a ~36 base pair 
reduction in the expected value of LTL. 

Table 4 summarises covariate effects for the  
FI-LAB/LTL model. Of note, covariates that were 
statistically significantly associated with LTL 
include age, sex, and poverty:income ratio. Age 
showed an expected inverse relationship with 
LTL, and female sex was significantly positively 
associated with higher telomere length, in line 
with several prior studies.27 Poverty:income ratio 
also showed a significant positive association 
with LTL, suggesting that, after controlling for 
other potential confounders, a higher income 
is associated with longer LTL. This is supported 
by multiple reports highlighting the role of 
socioeconomic status as a primary psychosocial 
factor linked with telomere shortening.28-30

Table 4: Linear regression examining the association between leukocyte telomere length (expressed as mean  
T:S ratio) and FI-LAB, adjusting for demographic and lifestyle-related covariates.

HS: high school; NA: not applicable SE: standard error of beta coefficient estimate. 

Variable Beta SE p value

Intercept 0.317 0.0565 <0.0001

FI-LAB -0.146 0.0526 0.006

Age -0.007 0.0007 <0.0001

Sex Male Reference NA NA

Female 0.053 0.0103 <0.0001

Race White Reference NA NA

Black 0.022 0.0157 0.171

Hispanic -0.012 0.0144 0.395

Other -0.019 0.0369 0.608

Poverty:income ratio 0.010 0.0039 0.011

Education Less than HS level Reference NA NA

HS level or higher 0.006 0.0124 0.651

Log (cotinine) -0.003 0.0017 0.092
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As detailed in the methods section, secondary 
analyses were performed to examine the 
association of each individual (dichotomised) 
FI-LAB component with LTL, adjusting for 
covariates such as age, sex, race and ethnicity, 
and poverty:income ratio. Of the 21 lab tests 
and physiological parameters comprising the 
FI-LAB, only 4 showed a statistically significant 
association with LTL: serum albumin (beta=-0.025; 
p=0.0280), total protein (beta=-0.040; 
p=0.0009), MCV (beta=-0.058; p<0.0001), 
and aspartate aminotransferase (beta=-0.042; 
p=0.0120). The authors recalculated the FI-LAB 
excluding these four lab tests and found that 
the new index showed no association with LTL 
(p=0.6). This implies that these four parameters 
may be largely responsible for the observed 
association between FI-LAB and LTL.

DISCUSSION

Both telomere length and frailty have been  
shown to be determinants of ageing-related 
health endpoints and mortality in previous 
studies. However, a definitive association  
between these two correlates of ageing 
has not been established. In this study, the  
authors re-examined this question using a 
novel laboratory measure-based index of frailty  
(FI-LAB) that focusses on subclinical deficits, 
in contrast to previously commonly used frailty 
measures (FI and FP), which are largely based  
on clinical deficits.3-8 In this study, the authors 
found a significant association between  
increased FI-LAB and decreased LTL. Another 
novel aspect of the study is that it is, to the  
authors’ knowledge, the first to investigate the 
individual biomarkers driving the observed 
association between FI-LAB and LTL.

FI-LAB was recently introduced by Howlett 
et al.11 as an alternative to commonly used 
operational frailty metrics. It focusses on  
subclinical aspects of frailty that the standard 
clinical frailty measures do not, and studies 
suggest it may provide independent and 
additional information regarding the physiological 
dysregulation preceding mortality.

The key distinction between FI-LAB and 
clinical FI is that the former is based entirely  
on biochemical markers and physiological 
parameters; hence, it is believed to represent 

the burden of subclinical deficits,14 which can be 
thought of as systemic, organ-level dysregulation 
that occurs as a direct result of molecular 
or cellular level damage (e.g., from oxidative 
stress or telomere attrition), and in turn leads 
to macroscopic (clinically evident) functional 
deficits and impairments. The subclinical  
dysregulation measured by FI-LAB provides 
an intermediate link between cellular-level 
damage that eventually scales up to clinically 
detectable impairments or deficits.12 The lab test  
biomarkers used to construct the FI-LAB  
(e.g., liver function enzymes, kidney function 
biomarkers, and haematological parameters) 
directly measure system and organ-level 
dysregulation, which is a direct by-product 
of cellular and molecular-level damage and 
the precursor of clinically detectable deficits. 
This could be a reason why FI-LAB exhibits  
a stronger association with telomere length,  
a key marker of cellular integrity, than FI and FP, 
which are based on clinical endpoints. 

This idea is corroborated by the findings from 
the secondary analyses, in which the individual 
biomarkers driving the FI-LAB/LTL association 
were identified: serum albumin, total serum 
protein, MCV, and aspartate aminotransferase. 
Removing these four biomarkers (out of a total  
of 21) from FI-LAB completely nullifies its 
association with LTL. An examination of the 
clinical and epidemiological literature on these 
biomarkers reveals that most appear to be 
intimately linked with ageing-related cellular 
damage processes (specifically inflammation  
and oxidative stress). For example, serum  
albumin is a well-known marker of systemic 
inflammation and is strongly linked with cellular 
pathology;31,32 it is also directly related to total 
protein (the sum of albumin and globulin levels 
in the serum). Synthesised in the liver, albumin 
is a ubiquitous protein involved in a multitude 
of physiological functions, many relevant to 
pathology and dysfunction in cellular processes. 
It has long been recognised as a strong  
predictor of mortality in both healthy and 
hospitalised populations,33,34 and is a strong 
indicator of preclinical disease.32,35-37 

MCV is a measure of the average volume of 
erythrocytes, which serves as a qualitative 
measure of erythrocyte health. It has been 
found to be highly significantly associated with 
LTL, with an effect size comparable to that of 
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to replicate the findings. Another limitation 
concerns the generalisability of the results on 
the association between FI-LAB and LTL and 
the secondary analyses identifying individual  
FI-LAB biomarkers driving this association.  
It is possible that the results observed in this  
study may be specific to the particular version 
of FI-LAB used. Although this version was 
introduced in the seminal paper by Howlett  
et al.11 and has been used in multiple studies, 
alternative formulations of lab-based frailty 
indices have also been developed. In general, 
using the deficit accumulation model of frailty, 
lab-based frailty indices can be constructed 
from any set of biomarkers or physiological  

parameters that meet certain criteria (e.g., 
variation with age).47 If such a set of biomarkers  
is sufficiently large and diverse, representing 
a wide array of physiological systems, a 
FI constructed from this set should reflect  
subclinical and preclinical frailty. This implies 
that, provided the aforementioned criteria 
are met, frailty indices should be largely 
insensitive to the particular biomarkers and/or  
physiological  parameters used to construct 
them.48 As a corollary of this, lab-based 
frailty indices with very different biomarker  
compositions should nevertheless be 
intercorrelated since they are all measuring 
the same underlying construct of subclinical 
frailty. Therefore, the authors hypothesised that 
the results can be generalised to other FI-LAB 
formulations; however, this was not investigated 
in the current study.

CONCLUSION

In conclusion, this study has demonstrated that 
a frailty measure constructed from standard 
laboratory tests and physiological parameters 
exhibits a significant association with LTL  
among a cohort of the USA general population 
aged ≥60 years. The results also identify 
individual parameters largely responsible for 
this association, offering putative insights into 
the pathways linking physiological dysregulation  
and telomere shortening.
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