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INTRODUCTION

Over the last two decades, a substantial 
effort has been devoted to understanding the 
heterogeneity of asthma.1-7 The architecture 
of wheezing illness during childhood has 
been described based on temporal patterns 

of symptoms using data-driven techniques  
applied to longitudinal  data from birth cohort 
studies.3-5,7-10 As a consequence, the conceptual 
framework of asthma heterogeneity is now 
accepted within the clinical and research 
communities.1 However, the main aim of 
discovering ‘asthma endotypes’11 and their 
underlying pathophysiological mechanisms for 
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the identification and development of novel 
targeted therapeutics appears as elusive as ever. 

In part, progress has been stymied by 
the methodological and disciplinary silos.  
The rapid increase in the ability to generate, 
share, and access large amounts of data,  
including longitudinal clinical information 
and biomarkers, various ‘omics’ technologies, 
and environmental exposures, coupled with  
advances in data-driven techniques to analyse 
high-dimensional data, has made it, on occasion, 
challenging to discern what problems we are 
seeking to address, or how findings are relevant 
in a real-world setting.12 Given that big data 
sets may contain many thousands of variables, 
or differ in terms of the format or level of the 
data (e.g., clinical history, laboratory tests, 
environmental and behavioural factors, various 
biomarkers, proteomic data, and genome-wide 
genotyping), it is not possible to define a priori 
all possible causal and associational mechanisms. 
An integrated approach to research may enable 
the power of these resources to be harnessed in 
ways that translate into a better understanding 
of causal mechanisms, more accurate 
diagnoses, and more personalised treatment. 
The integration of data, methodologies, and 
human expertise to understand the results can 
only occur through cross-disciplinary research, 
with the central principle that basic scientists, 
geneticists, clinicians, and data scientists work 
together to understand the clinical heterogeneity 
of complex diseases and the mechanisms  
underpinning them.

In this review, the authors set out to describe 
the evolution of analytical frameworks in asthma 
epidemiology, from the subjective hypothesis-
driven to the data-driven hypothesis-generating 
approaches; highlight why an integrated 
approach may be a more powerful catalyst for 
improved patient outcomes; and identify the  
key challenges faced by healthcare professionals 
in adopting findings to clinical practice.

EVOLVING FRAMEWORKS OF DATA 
ANALYSIS IN ASTHMA RESEARCH

Long-term follow-up in birth cohort studies 
has allowed a shift in emphasis in temporal  
perspectives from the static cross-sectional 
approach to a more dynamic longitudinal  

approach. By explicitly allowing for time 
in the mediation of disease development,  
the longitudinal approach has allowed us 
to establish whether individuals affected 
by symptoms of the disease at one point in 
time are the same individuals who have the 
disease at later time points, ascertain temporal  
variations across individuals in terms of the 
timing of onset or remission and the persistence 
and recurrence of episodes, and identify the 
risk factors that discriminate these different 
temporal patterns.3,10 Analytical approaches 
have progressed from supervised analyses 
testing-specific hypotheses to statistical  
data-driven classification techniques.3 In the 
former, typologies of disease or hypotheses are 
proposed by investigators or clinical experts, 
usually based on patterns of symptoms observed 
in a clinical situation.13 The Tucson Children 
Respiratory Study (TCRS) was one of the first 
studies to use longitudinal data to differentiate 
childhood wheezing phenotypes based on the 
presence of temporal patterns or the absence of 
symptoms.2 Three mutually exclusive phenotypes 
(transient early, late-onset, and persistent 
wheezing) were described from data collected 
at two time points (aged 3 and 6 years).2  

While such studies have been instrumental 
in introducing and confirming the idea of 
heterogeneity of childhood wheezing and  
asthma, the subjective approach has several 
potential limitations. For example, there is a risk 
of limiting the predictive ability of a model by 
restricting the set of inputs, imposing a structure 
that does not necessarily fit the data, failing 
to identify groups with truly distinct patterns,  
and/or missing rare patterns. 

In contrast, data-driven algorithms enable 
the analysis of large quantities of complex 
data for the identification of hidden patterns 
within such datasets. Continuous advances in  
computational power allow pattern discovery 
in high-dimensional data to take place with 
increasingly greater efficiency. As data-driven 
techniques are hypothesis-neutral, they are 
useful for examining heterogeneity based on  
distinctions that are not known a priori, and 
for making predictions about outcomes 
while remaining agnostic towards specific 
predictors.14 This has allowed for the discovery 
of patterns that could not have been predicted 
in advance. Numerous data-driven algorithms 
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have been applied in asthma research. For 
example, latent class trajectory models, which 
are a class of probabilistic models in which 
repeated measurements of manifest symptoms 
are modelled in order to derive homogenous  
subtypes, have been extensively applied  to 
derive distinct wheeze and lung function 
trajectories.4,7,8,15,16 One advantage of such  
methods is that objective statistical criteria 
are used for judging whether clusters (classes 
or subtypes) represent true variation in the 
population.  Clusters discovered using data-
driven approaches are not observed, but hidden, 
and should not be referred to as ‘phenotypes’; 
however, as this term has widely been used in 
the literature, the authors will continue to use  
this nomenclature.6 

Discovery of wheeze phenotypes using 
data-driven methods is susceptible to  
inconsistencies with respect to the number of 
discovered phenotypes, the size of each class, 
and the labels ascribed to them.6 For example, 
a review, which compared wheeze phenotypes 
derived from latent trajectory modelling 
across 28 studies, found that the number of 
phenotypes ranged from 3–8. Another review 
found considerable differences in the size of 
‘common’ phenotypes in different cohort studies6  
(e.g., there was up to a 10-fold difference in the 
proportion of children classified as late-onset 
wheezing [3.7–35.8%]).7 The inconsistencies 
between studies may arise from differences 
in the number of data points, the length of the 
intervals between data collection points, the age 
at follow-up, and the study's duration, sample 
size, population differences, and definition of 
the symptom17 (e.g., parentally-reported versus 
doctor-diagnosed).18

Bayesian analysis,9 hidden Markov models,9 
and temporal clustering19 have been applied to 
challenge the paradigm of the atopic march, 
which assumes that there is a natural progression 
of symptoms from eczema to asthma and rhinitis. 
This paradigm is based on observations using 
cross-sectional data on population prevalence. 
However, modelling longitudinal data within 
individual patients revealed heterogenous 
patterns, with <7% of children with any of these 
symptoms following the atopic march trajectory.9 
Other applications of machine-learning include 
Bayesian networks coupled with feature selection 
methods for the discovery of patterns of 

allergic sensitisation,20-22 principal components 
analysis to investigate whether syndromes of 
co-existing respiratory symptoms could be 
derived using responses to >100 questions 
from validated questionnaires,23 Bayesian 
estimation of a mixture of Bernoulli distributions 
to describe the architecture of IgE responses to 
multiple allergenic proteins during childhood,24 
Gaussian mixture model to cluster human blood 
cell cytokine responses to rhinovirus-16,25 and 
the use of network analysis and hierarchical  
clustering to explore the connectivity structure 
of allergen component-specific IgE, which 
demonstrated that the interaction patterns 
of IgE rather than individual ‘informative’  
components are associated with asthma.26

CHALLENGES TO BRIDGING  
THE GAP BETWEEN BIG DATA  
RESEARCH AND CLINICAL USE

Currently, there is no consensus on what the 
best approach should be to understand asthma 
heterogeneity, how best to identify distinct 
underlying pathophysiological mechanisms,  
and how to implement these findings in a  
clinically useful way.12 One potential flow is 
summarised in Figure 1.

Identification of Children  
at High Risk of Asthma

Prediction modelling to identify individuals at 
a higher risk of asthma is important and was 
identified as the top research priority by the 
European Asthma Research and Innovation 
Partnership (EARIP).27 Several algorithms have 
been proposed for predicting persistent asthma 
in school age using early-life features, including 
the Asthma Prediction Index,28 the Isle of Wight 
score,29 the PIAMA risk score,30 and the Leicester31 
and Manchester scores.32  However, these tools 
have not been widely adopted clinically.33 
A systematic review found that these tools  
typically have low sensitivity and positive 
predictive values, making them unsuitable for 
the precise identification of high-risk individuals 
in a clinical setting.34 Given the heterogeneity of 
asthma, algorithms may be required to predict 
different ‘asthmas’ instead of a one-size-fits- 
all tool.35 
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Lack of Uniformity in Defining  
the Dependent Variable

Comparison of prediction tools and adoption 
in practice is complicated by the fact there is 
no uniform operational definition of asthma. 
This creates challenges in identifying consistent 
early-life predictors, genetic and environmental 
associates, and pathophysiologic mechanisms.34,36 
A number of studies have indicated that the 
choice of case definition has a large impact on 
the estimate of asthma prevalence, as well as 
performance measures of predictive models. van 
Wonderen et al.37  found 60 different definitions 
of childhood asthma in cohort studies in 122 
published articles.37 Applying four common 
definitions to a single cohort, the authors found 
that prevalence estimates varied from 15.1–51.1%.37 

These finding have implications for comparing 
studies that use different definitions of asthma 
and suggest the importance of conducting 
sensitivity analyses to assess the impact of  
heterogeneous definitions. 

Transparency of  
Replication of Algorithms

Clinicians require access to their patients’ data 
in an absorbable and reliable way that integrates 
seamlessly with their clinical workflow and 
does not detract from their key priority of 
providing quality care during a short patient visit.  
Without interpretive tools that can be readily 
incorporated in daily practice, there may be a risk 
of valuable research findings being overlooked, 
as actions for decision-making may not be  

Figure 1: From asthma research to clinical implementation.
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obvious. The statistical literacy of the clinical 
community is not keeping pace with the 
proliferation of new data-driven techniques and 
the associated terms (e.g., negative matrix 
factorisation,19 probabilistic causal network 
analysis,38 decision trees,39 and least absolute 
shrinkage and selection operator [LASSO]-
penalised logistic regression31). Computational 
transparency and reproducibility of research 
findings are increasingly complicated by the  
density and complexity of the code underlying 
models implemented using a variety of 
programming languages.40 Such issues are 
increasingly being recognised, with organisations, 
including  Fairness, Accountability, and  
Transparency in Machine Learning, calling for  
greater awareness, debate, and research on 
such issues. Recently, practical solutions have 
been proposed, such as a toolkit for enhanced 
transparency, which includes the use of open-
source software, documentation of analyses  
steps, data archiving, and version control 
of code using web-based hosting services, 
such as GitHub, Inc., San Francisco, California, 
USA.41 Timely syntheses of findings from the 
growing research output can help clinicians to 
understand research with a potential for clinical 
application. For example, Pecak et al.42 recently 
developed a catalogue of 190 potential asthma  
biomarkers from 73 studies covering 13 omics  
platforms (including genomics, epigenomics,  
transcriptomics, and proteomics).42 They 
identified 10 candidate genes linked to asthma 
that were present in at least two omics 
levels, thus demonstrating the potential for 
prioritising specific biomarker research and the  
development of targeted therapeutics. 

FUTURE DIRECTIONS: TAKING 
AN INTEGRATIVE APPROACH

Integrating Data 

The proliferation of new data types coupled with 
advances in computational power may offer 
new opportunities for integrating different data 
sources to understand common complex diseases 
more holistically. Recent advances in molecular 
techniques offer promising opportunities to 
disentangle phenotypic characteristics that 
reflect underlying pathological mechanisms.43  
In this context, systems biology is an approach 
that investigates organisms as integrated  

systems comprising dynamic and interrelated 
genetic, protein, metabolic, and cellular 
components. Combined with mathematical, 
bioinformatic, and computational techniques, 
systems biology can help to elucidate the 
directionality of relationships between variables 
at a more holistic level, thereby moving away 
from associative to more causal analyses.38,44 
In the longer term, findings from such data 
have the potential for the development of  
non-invasive and quick diagnostic assessments 
for use in clinics.45-47 With the birth of genome-
wide association studies (GWAS), researchers 
are able to investigate the relationship between 
hundreds of thousands of genetic markers 
with a phenotype.48 However, most large 
GWAS in the field of asthma use the broadest 
possible definition of the primary outcome  
(e.g., ‘doctor-diagnosed asthma’). In contrast, 
using deep phenotyping, a recent comparatively 
small GWAS discovered the association of a 
specific asthma phenotype (early-life onset with 
severe exacerbations) with a functional variant in 
a novel susceptibility gene CDHR3 (rs6967330).49 
This SNP was not associated with doctor-
diagnosed asthma in any of the large-scale 
GWAS. Subsequent in silico studies have shown 
that rs6967330 mediates rhinovirus-C binding 
and replication, and that a coding SNP in CDHR3 
mediates enhanced rhinovirus-C binding and 
increased progeny yields.50 Several companies 
are currently pursuing this as a therapeutic target. 
This example shows the potential of moving from 
much better phenotyping to genetic association 
studies, discovery of mechanisms through 
functional studies, and the identification of 
therapeutic targets for tailored clinical treatment. 
Figure 2 summarises this desired sequence. 

New possibilities for asthma research are also 
emerging from personally tracked data from 
the ubiquitous use of digital devices. Data from 
Google, Twitter, and Facebook have made 
real-time information about daily behaviours, 
health status, and geographical locations 
widely accessible on an unprecedented scale. 
The potential for using web-based data for 
surveillance of trends has been demonstrated 
in other diseases, such as flu,51 lupus,52 and 
multiple sclerosis.53 In contrast, traditional 
sources of surveillance data are based on a time 
lag, which makes prompt responses infeasible.  
Real-time models could help healthcare 
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facilities anticipate asthma-related visits and 
hospitalisations, and plan staffing and resource 
management in areas of high risk. A recent 
study has capitalised on the use of online 
data to demonstrate the potential for asthma 
surveillance.54 Text mining was used to link 
asthma-related tweets with electronic medical 
records using geolocation data, along with 
near real-time environmental data from an air 
quality sensor. When the number of asthma-
related tweets increased in a particular week, 
the number of asthma emergency department 
visits or hospitalisations increased proportionally 
during the following week. The predictive model 
suggested patterns of accident and emergency 
visits with around 75% accuracy.

Individually generated data are also emerging 
from synergies between medical technology and 
smartphones. Bluetooth-enabled smart inhalers 
and peak flow meters55,56 allow individuals to 
monitor lung function, medication use, and 
severity of symptoms.  myAirCoach, which 
is a pan-European Union (EU) consortium  

comprising patient groups, academic institutions, 
and technology and pharmaceutical companies, 
aims to provide an evidence base for the 
benefits of integrating sensor technology 
with computational modelling to provide 
personalised feedback to patients on how to 
manage their condition daily.57,58 The use of such 
data may provide clinicians with warnings on  
exacerbations, which would allow them to tailor 
medication accordingly. 

Table 1 summarises the strengths and 
limitations of different sources of data.3,10,38,42,56-64  
These types of data have the potential to uncover 
different aspects of asthma heterogeneity with 
greater granularity and certainty, but they are 
a complement to, rather than a substitute for, 
traditional or other forms of data. 

Integrating Multidisciplinary Expertise

One potential risk of ‘allowing the data to 
speak for itself’ is that data analysis may 
become divorced from rigorous scientific 
scrutiny and meaningful clinical interpretation.12  

Figure 2: Barriers to clinical implementation of asthma research. 
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The use of modern techniques, such as machine 
learning, does not and should not preclude the 
use of more traditional statistical hypotheses-
testing approaches.14,20,25 The patterns can be 
discovered in large and heterogeneous data, 
yet clinical and basic science domain experts 
can guide formulation of new hypotheses and 
provide interpretation to findings.59 For example,  
a recent study, which applied latent profile 
analysis to the Tasmanian Longitudinal Health 
Study, identified six discrete lung function 

trajectories,16 five of which were remarkably 
similar to trajectories from pre-school age 
to early adulthood in two UK birth cohorts.15  
Using logistic regression, the study found that 
three of these trajectories were associated with 
childhood asthma, and the same trajectories 
were also associated with chronic obstructive 
pulmonary disease in later life, suggesting that 
early-life risk factors could lead to poorer lung 
growth and adult risk factors could accelerate 
lung function decline. 

Table 1: Examples of asthma data sources with associated strengths and limitations.

Data source Strengths Limitations

Longitudinal birth cohorts 

Explicitly includes the dimension of time, 
which allows the natural history of disease 
development to be studied.

Sample attrition and differential loss to follow-up 
can introduce bias.

Can collect data on multiple outcomes 
simultaneously.

Labour and cost-intensive due to the need for a 
large sample size and the potentially long  
follow-up duration of the study. 

Questions can be tailored to a specific theme 
or disease.

Maintaining follow-ups can be challenging.

Can look at associations of early-life risk 
factors and exposures with disease outcomes 
later in life.

Risk of recall bias.

Systematic observations before the onset  
of disease.

Change in question wording over time.

Incorporation of validated standardised 
questionnaires (e.g., ISAAC).

Large sample sizes and long duration required 
for discovering rare subtypes of disease.

Potential for pooling different birth cohorts 
with similar questions and time points.

Not practical for rare outcomes.

Individually generated data 

Data can be collected in real-time through the 
use of digital devices, wearable technologies, 
or medical devices, such as electronic inhalers. 

Low long-term adoption of apps or technologies.

Potential to collect data on multiple domains 
(e.g., health behaviours, symptoms,  
and environment).

Potential of low-quality data due to incorrect use 
of technology or malfunction.

Improved self-management. Technologies are not aligned with public health 
computer systems, meaning limited benefit for 
clinical management. 

Improved patient–clinician dialogue. Risk of devices malfunctioning.

Monitoring of severity of symptoms. Missing data arising from an adverse  
health event.

Data can be captured passively for some 
wearable devices.

 

Data collected outside of the clinical setting – 
greater patient insight into their own health.

 

Internet text data: social 
media, such as Twitter, Google 
searches, and Facebook

Real-time data. Risk of false predictions if models rely on 
historical search terms. 

Geolocation  information combined with 
real-time data collection can reveal dynamic 
changes in disease over time.

Challenge of distinguishing 'noise' from genuine 
health episodes due to spam or searches not 
linked to health episodes.

Readily available. Recalibration of models to reflect changing 
search terms or unanticipated events  
(e.g., pandemics).

Elucidate differential risks due to  
geolocation tagging.

The unstructured nature of the data makes it 
challenging to link to other sources of data.

Potentially useful for forecasting.  

Large sample size.  
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As the number of relationships being tested 
increases, there is a risk of identifying  
false-positive associations in the absence of 
previous guidance about the clinical plausibility 
of such findings.65  Big data can only explain 
part of the picture, and clinicians can provide 
a more contextualised understanding through 
their experience, knowledge of detailed clinical 
histories, and being able to explain variations 
across their patients.66 Experts can review 
the findings from big data studies, which may 
generate promising leads for further enquiry. 

An integrated approach to big data may enable 
us to harness the power of big data in ways 
that translate into a better understanding of 
causal mechanisms, more accurate diagnoses,  
and more personalised treatment. Integration 
can occur at different levels through  

cross-disciplinary research (for example, the 
Study Team for Early Life Asthma Research 
[STELAR] consortium,60 MedALL,67 U-BIOPRED,68 
Breathing Together consortium69), wherein 
basic scientists, geneticists, clinicians, and 
data scientists work together to understand 
the mechanisms of relevance to clinical  
heterogeneity of asthma. Another way of 
bridging the divide between the clinical and big 
data communities is to understand the tools 
clinicians need to improve outcomes for their 
patients by taking a ‘team science’ approach.  
As an example, a recent pan-EU consensus 
exercise led by the EARIP sought to identify key 
areas for research funding that would, most likely, 
improve asthma diagnosis and patient care.27 
Experts comprised patients, patient organisations, 
healthcare professionals, researchers, industry 
representatives, and policy influencers.  

Table 1 continued.

ISAAC: The International Study of Asthma and Allergies in Childhood. 

Data source Strengths Limitations

Systems biology data: 
multiple types of 'omics' data 
(e.g., genomics, proteomics, 
and metabolomics)

A more holistic approach for investigating 
causal biological pathways that might inform 
endotype discovery and targeted therapies. 

Large sample sizes required to have sufficient 
power to detect associations.

Data can be used to model complex 
interdependencies between multiple 
dimensions (e.g., genome, transcriptome, 
epigenome, microbiome, and metabolome).

Replication in independent populations required 
for validation. 

 Risk of false-positive associations. 

 Tends to be captured at single time points. 

 Data collection is small-scale compared with 
other data types. 

 Difficult to externally validate findings due to 
cost and complexity of data collection. 

 Data is not readily accessible unlike other 
sources. 

Electronic health records

High granularity of clinical information: 
diagnoses, medication, test results, 
comorbidities, and demographics.

Potentially important information not routinely 
collected and requires replication in independent 
populations. 

Real-world population. Data on medication adherence or asthma control 
not recorded, which is a potentially modifiable 
risk factor.

Large sample size. Useful for association analyses but of limited 
benefit for causal analyses.

Curation of patient cohorts for 
epidemiological investigations, population 
management, and resource planning. 

Inconsistent data quality. 

 Confounding factors not recorded in the 
database (for example, environmental).

 Variability in data types (structured and 
unstructured). 



INNOVATIONS  •  January 2019	 EMJ  EUROPEAN MEDICAL JOURNAL90

The prediction of asthma in preschool children 
with reasonable accuracy, how to integrate new 
biomarkers (such as genomics, proteomics, and 
metabolomics) in the diagnosis and monitoring 
of asthma, and the measurement of exhaled 
volatile organic compounds were identified as 
priority areas for research. This demonstrates 
how integrating multidisciplinary expertise has 
the potential to inform research, and for findings 
to be translated into improved outcomes for 
patient care.

CONCLUSION 

One of the goals of asthma research is to 
understand disease heterogeneity with the aim 
of providing personalised treatment. There needs 
to be a shift away from the artificial dichotomy 
of data-driven hypothesis-generating versus 
more traditional hypothesis testing approaches 
towards a more integrated one, whereby  
cross-disciplinary collaborations can facilitate 
rigorous scientific scrutiny and interpretation 
of findings. No single source of data can 
uncover the complex dynamics driving asthma  
heterogeneity, and triangulation (integration 
of evidence from several different approaches 
with differing and unrelated sources of bias) 

is critically important to fill current knowledge 
gaps and improve causal inference.70,71  With 
the advent of new and exciting sources of data,  
there is huge potential for integrating these to 
provide a more holistic understanding of the 
disease at a very personal level. As the factors 
shaping the development and control of asthma 
affect individuals dynamically in response to 
treatment or environmental factors, deeper 
insights can be garnered through integration. 
Knowing in real-time when and where symptoms 
are exacerbated, in combination with refined 
subtypes and environmental data, may 
help identify personal triggers and inform a 
personally tailored care plan. 

Research needs to take greater steps to 
demonstrate clinical utility, or it risks being 
consigned to research for research’s sake.  
Tools need to be developed that clinicians can 
integrate into daily practice to make decision-
making more efficient and personalised.  
Steps need to be taken to improve the statistical 
literacy of healthcare professionals through 
greater education to bridge the divide with the 
big data industry. It is essential that clinicians 
engage in debates surrounding big data and 
healthcare as a step towards breaking down 
the siloed approach.
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