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Natural Killer Cells and Their Role in Immunity
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INTRODUCTION 

Natural killer (NK) cells were originally described 
in the 1970s as large granular lymphocytes able 
to develop natural cytotoxicity against tumour 
cells without a prior encounter.1-3 They play an 
invaluable role in early defence against invading 
pathogens and cancer and are able to produce 
an array of cytokines and chemokines to help  
regulate an immune response.4 NK cells make 
up 5–15% of human peripheral blood and 2–3% 
of murine splenocytes.5 They are found in both 
primary and secondary immune compartments, 
with the majority of cells being localised in 
the spleen, lymph nodes, bone marrow, and 
peripheral blood to carry out immunosurveillance 
throughout the vasculature. They are also found 
in mucosal tissues, including the lungs, small and 
large intestines, and colon.6 Along with their roles 
in immune defence, NK cells play significant roles 
during pregnancy. In response to sex hormones, 
there is a substantial increase in uterine NK cells, 

which are thought to promote placental growth 
and provide maternal–fetal immunomodulation;7 
however, both peripheral NK cells and uterine 
NK cells have been associated with infertility 
and miscarriage.8 Almost a decade ago, NK cells 
were recognised as a member of the lymphocyte 
family known as innate lymphoid cells (ILC). ILC 
were classified into three main groups based on 
their cell surface marker expression, functionality, 
and transcriptional regulation.9 Group 1 ILC, 
which originally included ILC1 and NK cells, were 
distinguished from other ILC groups by their 
constitutive expression of TBX21 and its protein 
product T-bet, and the production of IFN-γ 
following IL-12 stimulation.10 However, recently 
the ILC family has been reclassified into subsets 
based on their development from the common 
lymphoid progenitors (CLP) and their immune  
functions. In these subsets, NK cells are no  
longer grouped with ILC1.9 This article will 
review the development,  function, and memory  
capacity of NK cells, along with their roles during 
viral infection and cancer.

Abstract
Natural killer (NK) cells are effector lymphocytes that play protective roles against both infectious 
pathogens and cancer. Although NK cells contribute to the innate immune system, they have a number 
of similarities to cells of the adaptive immune system, including T and B cells. Recent discoveries 
have also shown that NK cells are capable of adapting and developing into long-lived memory cells, 
providing new functional insights into the roles of innate immune cells. In this article, the author 
provides an overview of human and murine NK cell development, function, and memory, as well as 
their role in viral infection and cancer.
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NATURAL KILLER CELL DEVELOPMENT

NK cells have been classified as components 
of the innate immune system; however, they 
have also been shown to possess numerous 
developmental and functional characteristics 
similar to cells of the adaptive immune system, 
including T and B cells. These include the 
development from the CLP in the bone marrow, 
expression of the recombination-activating  
genes during ontogeny, the need for common 
γ-chain-dependent cytokines (including IL-
15) during development and homeostasis, 
and an education process analogous to T cell 
development in the thymus.11,12 It has also been 
proposed that NK cells may develop in both the 
thymus and the liver.13 Furthermore, much like T 
and B cells, which use their activating receptors  
(T cell or B cell receptor, respectively) to  
recognise antigens, NK cells express germline-
encoded activating receptors that are 
able to bind directly to stress-induced or  
pathogen-derived antigens.14 

Developing from haematopoietic stem cells,  
CLP in murine bone marrow differentiate into 
pre-NK precursors with a Lin-CD117loCD127+ 
phenotype and express a number of NK cell-
specific receptors including NKG2D and 
CD244,15 but during this stage the cells are 
negative for classical markers such as NK1.1 and 
CD49b. Following the expression of the β-chain 
receptor for IL-15 (a cytokine required for NK  
cell development), these cells are now classed 
as NK precursors. Once CD122 is expressed, 
they become responsive to IL-15 and develop 
into immature NK cells, observed by CD11blo 

and CD27 surface expression.16 At this point, a  
number of activating and inhibitory receptors are 
also beginning to be expressed on the surface 
of the developing NK cells.17 CD11b and CD27 
expression defines murine NK cells in four stages  
of maturation, which correspond with their  
cytolytic activity and production of inflammatory 
cytokines (Figure 1). During maturation, 
immature NK cells progress to CD11bloCD27hi, 
then CD11bhiCD27hi, and finally CD11bhiCD27lo.18 
In humans, NK cells also develop from 
haematopoietic stem cells and through a CLP. 
During five stages of development, there are a 
number of changes in expression levels of CD56, 
CD94, and CD16, and, much like for mice, human 
NK cells become responsive to and require the 

cytokine IL-15. Maturing human NK cells can 
differentiate into CD56bright cells, which usually 
remain in the lymphoid tissue to interact with 
dendritic cells (DC) and CD56dim cells that return 
to circulation via the lymphatics.15 Human NK  
cells are considered fully mature when they have 
high cytolytic activity and are able to produce 
large amounts of IFN-γ.17

Along with the expression of various cell surface 
markers and receptors, there are complex 
networks of transcription factors that can help 
dictate lymphocyte lineage commitments and 
give rise to distinct cell fates. Thymocytes can 
be diverted into an NK cell-like lineage if Bc111b, 
a Notch-1-dependent transcription factor, is 
ablated during T cell development.19 Furthermore, 
NK cells and other helper ILC, but not T or B cells, 
require Id2 and Nfil3 for their development.16

NATURAL KILLER CELL FUNCTION

The effector function of NK cells is determined 
by an integration of numerous signals. To 
sense their environment, NK cells use a tightly 
regulated balance of activating and inhibitory 
germline-encoded receptors, and initiation of an 
NK cell response is dependent on signalling via 
these receptors (Figure 2). Under physiological 
conditions, circulating NK cells are mostly 
in a resting state; however, activation by an 
array of cytokines can lead to the infiltration 
of these cells into pathogen-infected or  
cancerous tissues. 

Healthy cells express major histocompatibility 
complex class I (MHC I) molecules that act as 
ligands for inhibitory receptors on NK cells and 
contribute to the ‘self-tolerance’ of these cells. 
Killer cell immunoglobulin-like receptors in 
humans or members of the Ly49 family in mice 
make up the main inhibitory receptor profile of 
NK cells that bind MHC I molecules and maintain  
a tolerance for healthy host cells.20 However,  
during viral infection and tumour development, 
MHC I molecules are usually downregulated, 
lowering the inhibitory signalling threshold of the 
NK cell and leading to cell activation.21 Cellular 
stresses associated with infection or cancer 
growth, such as DNA damage responses and 
the expression of tumour suppressor genes, 
cause the upregulation of activating receptors on  
NK cells. 
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In most cases, NK cells are governed by a number 
of receptors and regulated by the integration of 
co-activating (NKp46, NKG2D, CD16, and LFA-
1) and co-inhibitory (NKG2A, KLRG1, and TIGIT) 
signals via surface receptors that recognise the 
appropriate ligand.22 Signalling via the activating 
receptors on NK cells causes a shift in the balance 
towards activated NK cells that are able to directly 
eliminate target cells through NK cell-mediated 

cytotoxicity, or indirectly via the secretion of pro-
inflammatory cytokines. There are also cytokine 
receptors that transmit activating (including 
IL-2, IL-12, IL-18, Type 1 IFN, and TNF-α) or 
inhibitory signals (TGF-β) during NK cell activity.22 
Additionally, ligand interactions with cell–surface 
receptors on NK cells can lead to the secretion of 
pro-inflammatory cytokines, including IFN-γ.23

Figure 1: An overview of natural killer cell development.

NK cells derived from the CLP differentiate into a pre-NKP population, identified by its expression of CD117 and lack 
of CD122 expression. After becoming an NKP, the cells start expressing NK cell markers (NK1.1 and NKp46) and are 
considered to be immature NK cells at this stage. As they mature further, they acquire CD49b and CD11b expression 
and lose the expression of CD27. Fully mature NK cells are able to express cytolytic molecules and cytokines 
(including IFN-γ). Transcription factors also play important roles in governing lymphocyte fate from the CLP. A 
simplified list of transcription factors driving the NK cell lineage is shown in the box and the numbers on the diagram 
indicate where they have been identified at the different stages during development. ‘Early' and ‘Late’ indicates when 
they are thought to be important during the maturation process. 

CLP; common lymphoid progenitor; HSC: haematopoietic stem cell; NK: natural killer; NKP: NK cell precursor.
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Figure 2: Schematic of natural killer cell function during ‘resting’ and ‘killing’ states.

NK cells are able to recognise and kill target cells by an integrated balance of activating and inhibitory signals, 
which allow them to distinguish between healthy cells and target cells (those virally infected or transformed). A) 
‘No-killing’ NK cells have balanced activating and inhibitory signals when recognising healthy cells. The inhibitory 
signals are delivered by self-MHC class I in this setting. B) Target cells, such as those infected or transformed, often 
downregulate or lose MHC class I molecules on their surface and these cells are detected by the NK cells as ‘missing-
self’ leading to killing of the target cell. C) Tumour cells and virally infected cells often overexpress activating ligands 
on their surface, which are recognised by activating NK cell receptors; this process overrides any inhibitory signals 
triggering ‘induced-self killing’ and lysis of the target cell.  

A ‘+’ symbol indicates activating signal and a ‘-’ symbol indicates inhibitory signal. 

MHC: major histocompatibility complex; NK: natural killer.
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NATURAL KILLER CELL MEMORY

The quick response capabilities and enhanced 
host protection against a previously  
encountered pathogen make up the classical 
definition of immunological memory.24 Much like 
T cells, NK cells are able to acquire functional 
qualities associated with immunological  
memory in both non-infection settings and in 
response to pathogens. 

During different educational routes, the  
formation of NK cell memory can occur in two 
ways: via antigen-dependent (virus or hapten-
induced) or antigen-independent (cytokine-
induced) mechanisms. Sensitising mice with 
haptens (molecules able to stimulate the 
production of antibodies) in the presence of 
the pro-inflammatory cytokines IL-12, IFN-α, 
and IFN-γ leads to hapten-specific memory NK 
cells.25,26 Long-lived memory cells are generated 
following an infection and show a heightened 
response upon secondary challenge with the 
same pathogen. The memory formation process 
in T cells has been well characterised and is 
usually distributed into three main phases.27 Upon 
cognate antigen exposure, naïve T cells clonally 
expand and differentiate into effector T cells 
during the ‘expansion’ phase. This is followed 
by a second ‘contraction’ phase, in which most 
of the effector cells undergo apoptosis, leaving 
a small pool of stable T cells that can enter the 
‘memory’ phase. These memory T cells persist 
throughout the organs of the host and maintain 
their longevity through self-renewal until they 
encounter their cognate ligand, where they 
display enhanced host protection and effector 
function.28 As cells of the innate immune system 
are unable to undergo somatic rearrangement  
of their receptor genes, it was thought that  
these cells, including NK cells, lacked antigen 
specificity and were, therefore, unable to develop 
classical immunological memory.14 

However, in the common inbred laboratory 
mouse (C57BL/6), the activating receptor,  
Ly49H, which is expressed on approximately 
50% of NK cells, binds with precise specificity to 
the mouse cytomegalovirus (MCMV)-encoded 
glycoprotein m157 expressed on infected cells 
to drive the expansion of virus-specific NK cells 
during the acute phase of MCMV infection.29,30 
Once the infection is under control, expanded 
effector NK cells undergo a contraction phase to 

form a pool of long-lived, self-renewing ‘memory’ 
or ‘adaptive’ antigen-specific NK cells, a response 
similar to that observed in T cells. These NK 
cells can be recovered months after the initial 
infection in a number of peripheral tissues.31 
The expansion and memory formation of virus-
specific NK cells is dependent on an interaction 
with the viral antigen, as MCMV lacking the 
m157 glycoprotein does not induce Ly49H NK 
cell expansion or the development of memory.31 
Previous studies have also shown that memory 
NK cells have a unique transcriptional signature 
when compared to naïve NK cells24 and possess 
functional attributes commonly associated with 
memory T cells, including secondary expansion, 
enhanced effector function, and increased 
protection against viral challenge.31 However, 
until recently, little was known about how  
transcription is controlled at an epigenetic 
level in NK cells while they transition between 
naïve, effector, and memory states. Chromatin 
accessibility analysis by assay for transposase-
accessible chromatin using high-throughput 
sequencing (ATAC-seq) and transcriptional 
profiling via RNA-seq showed that, during MCMV 
exposure, NK cells undergo dynamic changes 
in chromatin architecture and that NK cells and 
CD8+ T cells share common epigenetic and 
transcriptional programmes as they transition 
from naïve to memory cells.32 

NATURAL KILLER CELLS IN VIRAL 
INFECTION

NK cells play an important role in viral clearance 
but their responses were initially thought to be 
non-specific and lacking an immune memory 
response.33 However, it is now understood that 
NK cells are able to respond specifically to an 
infection and, in many cases, are able to develop 
memory recall responses.33 Inflammatory states 
can cause NK cells to enter the lymph nodes 
and influence T cell responses by promoting 
Th1 cell polarisation through the release of IFN-γ 
or restricting the expansion of T cells by killing 
activated cells.34 In healthy individuals, NK cells 
contribute to controlling several viral infections, 
including cytomegalovirus (CMV), influenza, 
hepatitis C, and HIV-1.35 Humans with complete 
or partial impairment in NK cell numbers 
or function have also been shown to have  
increased susceptibility to viral infections, 
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including herpes simplex virus, CMV, varicella 
zoster virus, and human papillomavirus.35

During viral infection, NK cells use a number of 
approaches to sense inflammatory signals and 
express receptors for cytokines, including IFN-α, 
IL-12, IL-15, and IL-18, whose expression is greatly 
upregulated during early infection, providing 
a vital role in the activation of NK cells and 
host protection.36 Many cytokine receptors are  
uniformly expressed by NK cells, suggesting 
cytokines are able to signal to most NK cells 
and in some cases activate the entire NK cell 
compartment.4 IL-12, IL-15, and IL-18 also provide 
important stimuli for the expression of IFN-γ, 
a hallmark of NK cell expansion in humans 
seropositive for human CMV (HCMV).37 Type 
I interferons, IFN-α and IFN-β, have also been 
shown to play an important role in increasing 
the cytotoxicity of NK cells38 while protecting NK 
cells from fratricidal killing, leading to enhanced 
defence and cellular expansion.39 Furthermore, 
mouse IL-12 induces epigenetic remodelling 
in regulatory regions of genes encoding  
transcription factors such as Zbtb32, Runx1, and 
Runx3, thereby contributing to NK cell expansion 
during MCMV.40 Along with the expression 
of cytokine receptors, NK cells express low-
affinity Ig-G receptor FcRIII (CD16), allowing 
NK cells to bind to and become activated by 
antibody-coated target cells, a process known as  
antibody-dependent cellular cytotoxicity.41 This 
antibody-dependent activation of NK cells 
has been identified in response to a number of  
viruses, including influenza, HIV-1, and CMV.42-44 

As discussed previously, NK cells possess a large 
number of activating and inhibitory receptors  
that are known to play important roles in 
controlling viral infection. The majority of NK cells 
express the activating receptors NKG2D, DNAM-
1, NKp46, and, in humans, NKp30. The ligand for 
NKG2D is upregulated following environmental 
cues, such as cellular stress caused by viral 
infection, and this ‘induced-self’ recognition 
allows for NK cells to broadly survey for stressed 
cells and remove unhealthy or harmful host  
cells.45 NKG2D also provides a co-stimulatory  
signal to enhance proliferation and effector 
responses of NK cells during MCMV infection; 
however, NKG2D alone is unable to drive a robust 
expansion.46 Furthermore, ligands for DNAM-1 
are upregulated during cellular stress but, again, 
this signal alone is not sufficient to expand NK 

cell subsets.47 Thus, co-stimulatory functions are 
needed for optimal expansion and differentiation 
of Ly49H+ NK cells during MCMV. Along with 
stress-induced receptor signals, other activating 
receptors are expressed to precisely sense viral 
signals including NK1.1, which is found on the 
majority of NK cells and recognises the MCMV 
encoded protein m12,48 or NKG2C (human) 
and Ly49 family (mouse) receptors on specific 
subpopulations of NK cells that are activated by 
an interaction with their cognate viral ligands.11  
During HCMV infection, viral peptides derived 
from UL40 and presented on HLA class I 
histocompatibility antigen, alpha chain E and 
recognised by NKG2C, inducing population 
expansion of NKG2C+ NK cells.49 During MCMV 
infection in mice, the viral protein m157 is 
expressed on the surface of infected cells and 
recognised by the Ly49H receptor.50   

NATURAL KILLER CELLS IN CANCER

NK cells were first identified for their ability to 
kill tumour cells without prior sensitisation. They 
are able to directly kill tumour cells through 
the release of cytotoxic granules containing  
granzyme and perforin.51 NK cells and cytotoxic 
CD8+ T cells work together to generate an 
immune response against viruses and tumour 
cells; however, tumours often downregulate  
MHC I, making them unrecognisable to cytotoxic 
T cells, leading to a failure to initiate adaptive 
immune response functions.52 The lack of MHC I 
expression or an upregulation of NKG2D ligands  
or CD70 (the ligand for CD27) can still render 
tumour cells susceptible to NK cell-mediated 
lysis.53 NK cells play vital roles in eradicating 
tumour cells and numerous studies have shown 
this in vivo by implanting tumour cells into 
mice genetically lacking NK cell function or by 
the administration of antibodies to deplete NK 
cells.54 In most cases, eliminating NK cells in  
these mice led to more aggressive tumour  
growth and metastasis.54 NK cells are also able  
to exert cytotoxicity against an array of 
malignancies, including acute myeloid  
leukaemia, acute lymphocytic leukaemia, and 
multiple myeloma, along with many solid 
tumours, including ovarian and colon tumours, 
and neuroblastomas.49,55 

NK cells can be activated by various stimuli, 
including contact with DC. DC are the main 
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