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INTRODUCTION

IL-10 plays an important role in the attenuation 
of inflammation or tissue damage and has been 
found to be produced by an array of white blood 
cell types, including lymphocytes, monocytes, and 
granulocytes, as well as non-immune cells such as 
epithelial or neuronal cells.1-4 IL-10 acts through 

a trans-membrane receptor complex, which is 
composed of IL-10R1 and IL-10R2, and regulates 
the functions of lymphocytes, macrophages, and 
various other cells.5,6 Several infection studies 
support the idea that IL-10-producing cells, 
including T regulatory cells (Treg), macrophages, 
and dendritic cells (DC), are a major subset of 
immune cells, possessing potent suppressive 
properties directed at T effector cells.1 Additional 
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IL-10-producing cells are polymorphonuclear 
cells, natural killer cells (NK), and B regulatory 
cells (Breg), which are involved in infective, 
autoimmune, and neoplastic diseases, as well  
as tolerance induction.1,5,6 

Inducible IL-10-secreting Breg have also been 
demonstrated to contribute to allergen tolerance 
through suppression of effector T cells and 
selective induction of IgG4 isotype antibodies.1,7,8 
The allergen-tolerant state after exposure to  
high concentrations of pathogen-associated 
molecular patterns is associated with the local 
and systemic induction of distinct populations 
of allergen-specific T regulatory lymphocytes, 
including IL-10+ Treg, TGF-β+ Treg, and 
FoxP3+ memory Treg.9,10 The protective and 
recovery-promoting effects of IL-10 during 
autoimmune diseases (mainly produced by 
Breg or DC) include a reduction in peripheral 
T-cell proliferative responses via the modulation 
of antigen-presenting cell function, a decrease 
in pro-inflammatory cytokine secretion, 
and a preferential inhibition of T helper  
(Th)17-mediated neuro-inflammation; the 
defective expression of Breg combined with 
impaired Treg and enhanced Th17 cells play 
an important role in the development of  
autoimmune pathologies.1,11,12 

Notably, several studies on infective diseases 
show IL-10 to be a crucial factor in inhibiting the 
harmful effects of the innate pro-inflammatory 
immune response in a Th1-dominated milieu 
only, but not if the balance is shifted towards 
a Th2 response.1,13-15 The induced manipulation 
of T cells and B cells toward the Th2 profile 
and macrophage/monocytes activation can 
lead to impaired resistance, therefore assuring  
chronicity and an increased survival potential 
for different infective agents, such as viruses, 
chlamydia, protozoans, and parasites.13,14,16-19 

IL-10 production also induces extensive changes 
in gene expression and cytokine release,  
which also lead to endotoxin tolerance and 
deviations in cellular function, maintenance, 
growth, and proliferation, as well as coagulation 
and fibrinolysis, cell–cell signalling or interaction, 
and cellular movement.1,20,21 In this review, the 
authors discuss the role of IL-10 in different 
situations in light of recent findings. 

INFECTIVE PATHOLOGIES, IL-10 
TRANSIENT INCREASE, AND THE SWITCH 
OF IMMUNE RESPONSE

There have been numerous regulatory effects of 
IL-10 described, predominately related to infective 
pathology regulation (Table 1).  

Reference Pathologic 
condition/
intervention

IL-10 Source(s) Primary immune 
effects

Immune and non-immune 
consequence(s)

3 Plasmodium 
chabaudi

Murine spleen 
CD19+Breg

IgG production       transient infection 
susceptibility

4 Viral 
laryngotracheitis

Chicken trachea, 
Harderian gland

  IL-1β, IL-13, 

IFN-γ

     inflammatory cell 
involvement/tissue 
damage,                            
     virus replication

22 H1N1 vaccine NK, CD4+/CD8+ T 
cells, monocytes

  IL1β, IL-6, IL-12, 
TNF-α, IFN-γ

Humoral response

23 Mycobacterial 
hyper-sensitivity, 
pneumonitis

Murine 
bronchoalveolar 
lavage

  IL-1β, IL-6, 

TNF-α

Granulomatous 
inflammation, neutrophil/
lymphocyte infiltration

24 Shigella flexeneri 
vaccine

Human serum, 
lymphocyte 
supranatant

  IL-2, IL-17, 
TNF-α, IFN-γ,  

  IL-8

Humoral response

25 Brucella 
pinnipedialis

Atlantic cod, blood, 
internal organs 
(spleen, liver, etc.) 

  IL-1β, IFN-γ Humoral response, 
bacterial load, 
mononuclear cell invasion

Table 1: The role of interleukin-10 in infective pathologies (2016–2018).
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Reference Pathologic 
condition/
intervention

IL-10 Source(s) Primary immune 
effects

Immune and non-immune 
consequence(s)

26 Orf virus, pustular 
dermatitis

Mice, blood, skin, 
lymph nodes 

 monocytes, DC, 
MC recruitment or 
activation

 inflammatory cell 
infiltration in the skin

27 Chronic hepatitis 
C/antiviral 
treatment

Human serum /  IL-1β, IL-4, IL-
15, TGF-β, IFN-γ

/  cirrhosis, fibrosis

28 HIV and HCV 
coinfection

Human plasma, liver   CD4+ Treg, 
memory Treg, 
IFN-γ,  IL-2, IL-17

Liver stiffness, 
immunosuppression 

29 HIV and meningitis Blood, CSF   WBC, TNF-α, 
RANTES

CNS immunologic 
stimulation

30 Streptococcus 
suis

Murine splenocytes   IL-6,   IFN-γ, 
TNF-α, CD4+ 
splenic depletion

Lack of DC activation, 
impaired antibody 
response

31 Staphylococcus 
aureus

Tolerogenic DC Treg and TLR2 
activation

Th1 response impairment, 
immune evasion 

32 Malaria and 
non-typhoidal 
salmonella 
vaccine

Mouse serum   CD4+ and 
CD8+ affectivity, 

  IFN-γ

Immune protection loss 
(restored after IL-10 
blockade)

33 Trypanosoma 
cruzi, Chagas 
cardiomyopathy

Murine myocardium, 
CD4+ T cells

  M1 bactericide 
macrophage,  

  M2 anti-
inflammatory 
macrophage

Local parasitic persistence

34 Lymphocytic 
chorio-menginitis 
virus

KO Murine CD8+ T cells  immune 
response

 organ damage, 
mortality

35 Varicella-Zoster 
virus vaccine, 
murine IL-10 
inhibition

Human/murine serum  T cell response/
 T cell response

Reduced immune 
protection/normal immune 
protection

36 Herpes virus 
uveitis

Macaque, neural retina   IL-6, NFκB 
activation

Determination of disease’s 
severity

37 Escherichia coli WT/KO Murine intestine, 
mesenteric lymph 
nodes (B cells, CD4+ 
T cells) 

IFN-γ/ IFN-γ Mucosal homeostasis/
chronic colitis

38 Dengue virus Human serum, CD14+ 
monocytes

 IL-6,   Th1 
response/  IL-8

Thrombocytopenia, severe 
disease, delayed recovery/
recovery

/: versus; Breg: B regulatory cells; CD: cluster of differentiation; DC: dendritic cells; HCV: hepatitis C virus; HIV: 
human immune-deficiency virus; H1N1: swine flu; KO: knock out; IFN: interferon; CNS: central venous system; CSF: 
cerebrospinal fluid; Ig: immunoglobulin; M: macrophage type; NFκB: nuclear factor kappa-light-chain-enhancer 
of activated B cells; NK: natural killer; RANTES: regulated on activation, normal T expressed and secreted; TGF: 
transforming growth factor; Th: T helper; TLR: toll-like receptor; TNF: tumour necrosis factor; Treg: T regulatory cells; 
WBC: white blood cell; WT: wild type. 

Table 1 continued.
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Accordingly, spleen analysis of the CD19+ Breg 
cell response on Plasmodium chabaudi-infected 
BALB/c mice reinforced the observation of 
its regulatory role during an infection-related 
phenotype shift, represented by a strong 
IL-10 production.3 Similarly to infections, 
vaccination with monovalent H1N1 influenza is 
associated with a broad spectrum upregulation 
of inflammatory and regulatory biomarkers, 
such as IL-1β, IL-6, IL-10, and IL-12 derived from 
NK, CD4+, and CD8+ T-cells.22 This immune 
response relies on antibody production 
to provide persistent immune protection 
against the influenza antigen that subjects are  
exposed to.  

Previous findings regarding functions of the 
mentioned cells indicate that IL-10 is mainly 
produced during transient immune conditions 
and that the persistent IL-10-related effect may  
be the effectuation of the switching  
immunological response.1 These effects are 
demonstrated during exposure to infective 
agents, immunotherapy to different allergens,  
and the development of autoimmune  
pathologies, in which the implication of Th1,  
Treg, or Breg cells lead to the production of 
specific antibodies.1,3-21 Recent evidence appears 
to support IL-10 being a switcher of immune 
response.4,23-27 Thus, the peak of pro-inflammatory 
(IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-
13) cytokine gene transcription, 5 days post-
infection with an infectious laryngotracheitis  
virus strain in chickens, coincided with an 
increased recruitment of inflammatory cells, 
extensive tissue damage, and limiting of virus 
replication in the trachea.4 Early responses in an 
acute model of mycobacterial hypersensitivity 
pneumonitis in mice revealed a time and dose-
dependent increase in a range of cytokines, 
including TNF-α, IL-1β, IL-6, and IL-10, followed 
by subsequent granulomatous inflammation.23 
Inactivated whole-cell Shigella flexneri 2a-vaccine 
also induced a transient increase of different 
cytokines, including IL-2, IL-10, IL-17, IFN-γ, and 
TNF-α.24 Brucella pinnipedialis  additionally 
stimulates IL-10 or IFN-γ production, as observed 
from the 1st—28th day of experimental challenge 
in Atlantic cod, whereas anti-Brucella antibodies 
were detected from Day 14 onwards.25 A transient 
increase of IL-10 production during skin orf virus 
infection in mice was associated with recruitment 
limitation and trafficking inhibition of certain  
white blood and connective tissue cell 

subpopulations.26 In contrast, hepatitis C virus 
(HCV)-infected subjects show IL-10 reduction 
to normal levels only after successful antiviral 
treatment.27 In concert, these observations  
suggest that the increased IL-10 concentration 
under the influence of infective agents 
persists during the period of immune switch 
or modulation.1 The post-infective balance 
stabilisation for immune response compounds 
could correspond with the restoration of 
the lower (normal) IL-10 concentration to  
pre-infection levels. 

INFECTIVE AGENTS, IL-10, AND 
MANIPULATION OF IMMUNE RESPONSE  
OR DISEASE OUTCOMES 

Infectious agents are believed to be  
manipulators of immune response due to 
implications for IL-10 production, as reported 
in several studies. In this respect, HIV/
HCV-co-infected patients have shown an 
immunosuppressive profile compared to healthy 
controls and HIV-mono-infected patients.28 
White blood cell and inflammatory responses 
in cerebral liquor during asymptomatic 
bacterial meningitis in HIV-positive subjects 
has suggested that the central nervous system  
immune response in patients with HIV infection  
was independent of the systemic immune 
response.29 The manipulation of immune-
responsiveness is also observed during 
Streptococcus suis infection, showing a 
modulation of DC functions.30 S. suis mouse 
splenocytes produced different cytokines, such 
as IL-6 and IL-10, but the level of Th1 cytokines 
TNF-α and IFN-γ were very low. Altogether, 
these results suggest S. suis interferes with the  
adaptive immune response.30 Staphylococcus 
aureus uses highly efficient immune evasion 
strategies to cause immune tolerance and 
results in a wide range of pathologies; the 
central mechanism corresponds to DC-related 
production of high amounts of IL-10, which is 
associated with an impaired Th1 response.31 
Similarly to bacterial agents, malaria-related IL-
10-production inhibited protection against an 
attenuated non-typhoidal Salmonella vaccine 
in mice co-infected with malaria in a transient 
manner.32 The infection-related Th1 response 
impairment may be an adaptive mechanism by 
the infective agent, because the Th1 immune 
profile is much more effective against infections 
than the Th2 isoform.1 
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Recent clinical and experimental studies on 
infective diseases also report the outcome 
deviation caused by IL-10, such as the failure to 
eliminate Varicella-Zoster virus, the deviation 
of parasite load within the myocardium during 
the acute phase of Chagas cardiomyopathy, or 
immunopathology exacerbation in select organs, 
ranging from transient local swelling to an 
increased risk for mortality during acute primary 
infection with the lymphocytic choriomeningitis 
virus.33,34,39 Gershon et al.35 specified that  
significant humoral immunity boosting after 
zoster vaccine only occurred in patients with a 
low constitutive IL-10 levels, while Jacobshagen 
et al.34 highlighted the physiological role of 
IL-10 in the regulation of a balanced T-cell 
response, also limiting the immunopathological 
damage. Moreover, the modulation of immune 
response and disease outcome, under variations 
of IL-10 level in a murine model of infection by 
Trypanosoma cruzi, is associated with a sudden 
switch from the classical M1 macrophage 
(microbicidal) phenotype toward an alternative 
M2 (repairing/anti-inflammatory) phenotype 
that occurred within the myocardium very 
shortly after infection.33 Considering that parasite 
persistence within myocardium is a necessary 
and sufficient condition for the development of 
the chronic myocarditis, Ponce et al.33 discovered 
that transient inhibition of the aforementioned 
macrophage switch enhanced the microbicidal 
M1 subset predominance, diminished IL-4 and 
IL-10-producing CD4+ T cells, promoted a pro-
inflammatory cytokine milieu, and reduced 
parasite load within the myocardium during the 
acute phase.

IL-10 involvement with disease outcomes during 
infective pathologies is also observed in herpes 
simplex-infected neuronal retina, and mesenteric 
lymph nodes infected with Escherichia coli.36,37 

According to Wu et al.,37 production of IFN-γ 
rapidly and progressively declined after 
colonisation of wild-type but not IL-10-deficient 
mice. CD4+ and B cell-related IL-10 in wild-type 
mice peaked at Day 4 and subsequently declined, 
suggesting that E. coli may deviate the profile of 
the effector immune system in normal hosts for 
their own purposes, in parallel with induction of 
IL-10 that subsequently suppresses this response 
to mediate mucosal homeostasis. Additionally, 
severe dengue cases had low Th1 cytokines and 
a concurrent increase in inflammatory mediators 

such as IL-6, IL-8, and IL-10, which originate from 
CD14+ cells. The reduction in the levels of IL-8 
and IL-10 were identified as the most significant 
markers of recovery from severe disease.38 Aside 
from demonstrating the cytokine’s manipulative 
abilities, these studies reinforce the finding 
that the immunoregulatory cytokine IL-10 can 
suppress Th1-cell immunity.34 

The increased IL-10 production can be associated 
with deviations in infectious disease outcomes 
and may be influenced by the infective agents 
themselves.13 The suppression of the Th1 response 
(and development of other less effective anti-
infection profiles), as well as the deviation of the 
disease’s outcome towards the less aggressive 
anti-inflammatory phenotypes may be a result  
of interactions between the host immunity and  
the infective agent.1 This could lead to lack 
of infection eradication (disease chronicity),  
because, apart from the point-of-view of 
host-related beneficiary purposes, the  
anti-inflammatory and a less aggressive 
response may allow the infective agent to persist 
longer or under more favourable conditions 
within the host (avoiding the early death for 
both organisms) to fulfil its life cycle. In this 
context, the increased level of IL-10 seems 
to be necessary to mediate the switch of  
immune response.1,13,40 

IL-10, TRAUMA, PHYSICAL STRESS, AND 
REPAIRING PROCESSES

Recent publications report the IL-10 involvement 
in traumatic or physical stress situations,  
showing some similarities with pure infective 
conditions. Thus, the transient early implication 
of IL-10 in repairing processes after traumatic 
situations is also shown in the microglia of  
epileptic subjects, during the recruitment of 
macrophages accompanying the shortening of 
the early phases of skeletal muscle regeneration 
in mice, in the T cell response after stroke, 
or in response to intensive exercise in hot 
environments.41-44 In addition, Lentivirus-
related IL10-production and the consequent 
reduction of the neuroinflammatory response 
among spinal cord-traumatised mice reduced 
neutrophil infiltration at both Day 7 and Day 28  
of experimental trauma. Similarly to T. cruzi 
infection, this effect correlated with skewing 
of the macrophage population toward an anti-
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