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Abstract
The clinical management of non-small cell lung cancer has shown unprecedented progress into 
the era of target therapies and immuno-oncology. Despite significant recent achievements in the 
treatment of these patients, identification of all the clinically actionable alterations required for 
patient management remains challenging, particularly when dealing with cytological or small bioptic 
samples. Many investigations have assessed the role of diagnostic tools currently available, including 
immunohistochemistry and sequencing assays. It is extremely important to be aware of the minimum 
adequacy criteria for pathology laboratories to ensure correct management of the biological samples 
in non-small cell lung cancer, including cytological, cell blocks, and histological specimens. In this 
review, the authors provide a comprehensive overview of the gold standard requirements, processing 
parameters, and turnaround time for the final integrated report, and additionally outline the values 
and limitations of the different bioptic strategies.

INTRODUCTION    

In accordance with ‘taking care’ of the cancer 
patient, the management of non-small cell lung 
cancer (NSCLC) is currently carried out by a 

multidisciplinary team in which the pathologist 
plays a pivotal role.1 To allow for patient-tailored 
testing, appropriate handling of the bioptic 
material is crucial to allow for the integration of 
the pathological data with the clinical requests.2-4 
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Surgery and subsequent radiation or medical 
therapy is the treatment of choice in NSCLC with 
loco-regional extension.3 This approach is also 
possible in selected oligometastatic tumours;5 
however, up to 64% of patients with Stage I/
II NSCLC, and approximately 76% of those with 
Stage IIIA NSCLC, relapse and die within 5 years 
of initial diagnosis.6 The vast majority of patients 
with advanced NSCLC are considered surgically 
‘unresectable’.7-10 In Stage IIIB/IV, the effectiveness 
of various platinum-based drug combinations are 
similar, with response rates ranging from 30–40%, 
a duration of <6 months, and median survival 
of approximately 12 months.7 In particular, the 
selection of resistant neoplastic clones by means 
of somatic evolution and the substantial lack of 
recognised predictive/prognostic biomarkers 
are related to treatment failures.11 Lung cancer 
has become one of the most challenging fields 
in pathology and oncology over the past decade, 
contributing to a revolutionary paradigm-shift in 
patient management. 

Starting from the clinical need for prognostic and 
predictive biomarkers, pathologists have learned 
to refine their reports. To date, the analysis 
of epidermal growth factor receptor ([EGFR] 
on locus 7p11.2) gene mutations, anaplastic 
lymphoma kinase ([ALK] on locus 2p23.2-p23.1), 
and ROS proto-oncogene 1 ([ROS1] on locus 
6q22.1) rearrangements, and programmed 
death-ligand 1 (PD-L1) status is capital for 
clinical decision-making.12-14 In addition to these 
biomarkers, other actionable gene alterations 
are under investigation. MET proto-oncogene, 
receptor tyrosine kinase gene (MET) exon 14 
skipping was identified in approximately 5% 
of NSCLC patients and showed sensitivity to 
treatment with crizotinib and cabozantinib.13 

Activating mutations of EGFR can be observed 
in 10–16% of lung adenocarcinomas in European 
patients12-14 and are more frequently observed 
in young, female, Asian, non-smokers; however, 
these clinical parameters cannot be used as 
exclusive selection criteria.15 Several Phase III 
studies involving patients with NSCLC with 
sensitising mutations of EGFR showed, compared 
to standard chemotherapy, a high percentage 
of approximately 70% of objective responses 
and a significant increase in progression-free 
survival of 7–13 months in patients treated with 
EGFR tyrosine kinase inhibitors (TKI).16-18 The use 
of EGFR TKI in the front line of the population 

with mutated EGFR is considered a therapeutic 
standard and allows for routine research in all 
new cases affected by NSCLC, particularly non- 
squamous. The ALK gene rearrangement is 
present in approximately 3–5% of all pulmonary 
adenocarcinomas, especially in those with signet 
ring cell morphology, and predicts the response 
to ALK inhibitors.19-23 This rearrangement is 
infrequent in squamous tumours, although it has 
been reported in mixed adenosquamous forms, 
and is generally mutually exclusive to EGFR 
and RAS mutations.24 ALK testing is currently 
considered mandatory and, for practical reasons, 
it is usually performed with EGFR testing as a 
reflex test by immunohistochemistry (IHC) or 
fluorescence in situ hybridisation (FISH). 

The ROS1 gene codes for a tyrosine kinase 
receptor belonging to the insulin receptor family.25 
There are several fusion patterns of ROS1, the 
most frequent of which is CD74. The translocation 
of ROS1 is present in 1–2% of the population 
affected by NSCLC, and in relatively young 
patients with pulmonary adenocarcinoma or 
non-smokers in the remaining population.26 There 
is high homology of the tyrosine kinase domain 
between ROS1 and ALK, and a preclinical study 
showed that NSCLC cell lines with translocated 
ROS1 were sensitive to crizotinib.27 The U.S. Food 
and Drug Administration (FDA) has approved 
crizotinib for the treatment of patients with 
metastatic ROS1-positive NSCLC and is, to date, 
considered the most appropriate therapy for these 
patients.28 The latest biomarker that oncologists 
have claimed as a potential tool for increasing 
precision medicine is PD-L1 IHC analysis, due to 
the immunochemotherapy advent.29-34 Other 
biomarkers under investigation are represented 
by the analysis of the tumour mutational burden 
(TMB), mismatch repair, and microsatellite 
instability status for immunotherapy treatment 
selection, although they do not represent a 
global standard of care.35-38 In this scenario, it is 
extremely important to be aware of the minimum 
adequacy criteria for molecular pathology 
laboratories to ensure correct management of the 
biological samples in NSCLC, including cell blocks 
(CB), cytological, and histological specimens  
(Figure 1). Here, the authors illustrate the gold 
standard requirements, processing parameters, 
and turnaround time for the final integrated 
pathology report and outline the values and 
limitations of the different bioptic strategies.
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SAMPLE TYPES 

General Considerations

The first task of the pathology laboratory is 
correct management of the biological samples. 
This is a crucial step for precise diagnosis and 
subsequent biological characterisation of the 
neoplasms. Microhistological analyses are 
considered a good link between traditional 
histopathology, first-generation molecular 
biology, and next-generation sequencing (NGS) 
techniques. In many European countries, fine 
needle aspiration (FNA) remains the standard 
tool for the diagnostic approach to NSCLC 
both in peripheral pulmonary sites and lymph 
nodes.39,40 In this setting, the preparation of CB 
is preferable for molecular testing and requested 
for the PD-L1 status analysis. For this reason, the 
rapid on-site evaluation (ROSE) of cytological 
samples should be performed by a pathologist 
or a trained cytotechnician, whenever possible. 
For centrally-located NSCLC, bronchoscopy 
allows for the direct observation of the lesion to 
evaluate its characteristics and also to conduct 
tissue sampling.41 One of the major drawbacks of 
the histological and molecular characterisation 
of NSCLC is that the bioptic samples are usually 

represented by fragments measuring no more 
than 2 mm in greatest dimension. Furthermore, 
the analysis of these small fragments is often 
hindered by necrosis, spread inflammation, and/
or crushing artefacts. 

For lesions that cannot be assessed using 
bronchoscopy, a transthoracic core needle 
biopsy (CNB) may be performed under imaging 
guidance, for example C-arm cone-beam CT 
(CBCT). This technique consists of a flat-panel 
volume CT in which a cone-beam X-ray tube 
and a flat-panel detector are integrated with a 
C-arm gantry, enabling both CT and fluoroscopy 
guidance.42,43 The CBCT virtual navigation systems 
create a virtual needle pathway to the target 
nodule and navigates the needle into the target 
after the operator determines the skin entry site 
and destination based on pre-procedural CBCT 
data. The use of 18-gauge semi-automatic biopsy 
needles with a 17-gauge coaxial needle obtains 
1.5 cm-long cores in lesions with a diameter >2 
cm. The diagnostic performance may reach 90% 
sensitivity; however, mean core size is crucial for 
the success or failure of the procedure.44 Positive 
predictive value (PPV), negative predictive value 
(NPV), and overall accuracy in a large series were 
100%, 100%, and 87.7%, respectively. Sensitivity 

Figure 1: Schematic representation of sample specimens and their quantity and quality of nucleic acid characteristics where green 
signifies ‘good’ and red signifies ‘bad’. Collection invasiveness decreases dynamic sampling increases from left to right. For blood and 
sputum, the red box refers to circulating tumour DNA, while the green box refers to genomic DNA.
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was significantly lower for small lesions (57.1%; 
p<0.01 for lesions ≤10 mm).43 For CNB sampling, 
the radiologist carries out an average of two 
passes per nodule, with rare exceptions due 
to technical issues such as the occurrence of a 
haemorrhage after the first needle passage.

Transthoracic Core Needle Biopsy 
Versus Bronchoscopy and Translational 
Molecular Research

Bioptic fragments from bronchoscopy are 
immediately formalin fixed and touch preparations 
to perform ROSE are not reccomended. Fixation 
should be set in cold (4 °C), 10% neutral formalin for 
the shortest possible time, typically 6–12 hours for 
small biopsies. Pathology laboratory technicians 
should prepare one section for the haematoxylin 
and eosin (H&E) staining and additional sections 
for the IHC characterisation of positive cases, 
using a minimum panel composed of p40, 
which is more specific than p63, for squamous 
cell carcinoma, and thyroid transcription factor 
1 (TTF1) for adenocarcinoma. Other markers 
such as synaptophysin, chromogranin, or 
insulinoma-associated protein 1 (INSM1) should 
be performed in the presence of neuroendocrine 
differentiation. In the case of a NSCLC diagnosis 
favouring adenocarcinoma, subsequent PD-L1, 
ALK, and ROS1 reflex testing can be completed 
in 24–48 hours. For CNB, setting up blank slides 
is encouraged too; the formalin-fixed paraffin-
embedded (FFPE) section obtained by CNB can 
be used to extract DNA for molecular analyses 
or can be treated to be evaluated by cytogenetic 
techniques such as FISH. The morphological 
distinction between neoplastic and benign areas 
is usually immediate, and necrosis or foci of 
inflammation can be avoided. The leftover paraffin 
inclusions should be stored at room temperature. 
Blank slides should not be used for IHC after a 
few weeks of storage due to antigenicity loss 
phenomena; however, they can still be employed 
for extractive molecular techniques. 

The most clinically relevant EGFR mutations 
concern the deletions of exon 19 or the point 
mutation L858R in exon 21 (80–90% of all 
mutations), but even rarer mutations in exon 18 
and 21 can predict response to the EGFR tyrosine 
kinase.45 Different strategies, for either clinical 
or research purposes, to detect the presence of 
EGFR gene mutations are employed in molecular 
predictive laboratories according to the 

available technology. Sanger direct sequencing, 
massARRAY® (Agena Bioscience, Inc., Hamburg, 
Germany), and PCR based techniques still 
represent the ’gold standard’ methodologies 
for molecular testing even if they are not the 
most sensitive.46-49 The College of American 
Pathologists (CAP), the International Association 
for the Study of Lung Cancer (IASLC), and the 
Association for Molecular Pathology (AMP)  
guidelines recommended that for EGFR gene 
mutations testing, detection of 50% tumour cells 
is strongly encouraged, but is rarely achieved in 
routine practice; when using sensitive detection 
methods, as little as 10% tumour cell detection 
is acceptable.50 Currently, for technologies with 
high sensitivity such as amplification refractory 
mutation system (ARMS), digital PCR, and NGS 
applied for gene alterations testing, percentages 
of tumour cells as low as 1% have been reported.51 

ARMS was able to identify a single mutant allele 
in a background of 100–10,000 wild-type alleles.52 
NGS, as demonstrated by Malapelle et al.53 by using 
a narrow gene panel, was able to detect one mutant 
allele in a background of 20,000 wild-types.53 A 
similar sensitivity could be obtained by a digital 
solid PCR approach.54 In all of these examples, 
specificity of 100% (no false positive results) 
were obtained. In order to avoid the risk of false 
positive and negative results, particularly when 
considering mutated alleles at low frequencies 
in paucicellular specimens, careful validation is 
needed. Secondly, following IHC and instances 
of ALK Score 2 positive adenocarcinomas, the 
FISH cytogenetic method evaluates translocation 
involving EML4 through an intra-chromosomal 
reversal event. The recommended kit is the 
Vysis ALK Break Apart FISH Probe Kit (Abbott 
Laboratories, Abbott Park, Illinois, USA).55 For 
testing ALK rearrangements the percentages of 
tumour cells used are not as critical, and areas 
where tumour cells are not overlapping should 
be chosen.56 In this subpopulation of patients, 
however, the appearance of secondary sequence 
variants in the kinase domain that favour drug 
resistance have been noted to favour the future 
advent of alternative diagnostic strategies such 
as RT-PCR or NGS.57 

The test considered to be the gold standard for  
the determination of translocation of ROS1 is 
FISH.58,59 IHC methods are currently used as 
screening tests but, in view of the high false positive 
rate, tumour samples considered positive in IHC 
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should be tested according to the FISH method.60 
Finally, RT-PCR techniques have also been 
successfully studied.61 Gold standard protocol 
should produce a 24–48 hour turnaround time 
for the final diagnostic report of histological type 
and predictive immunohistochemical markers 
(i.e., ALK, ROS1, PD-L1). EGFR status should be 
reported in optimal times of 5–7 days from receipt 
of the biopsy. For immunochemotherapy, the TMB 
calculation may be performed using whole exome 
sequencing (WES) as the standard; however, costs 
are high, and computational complexity and time 
make targeted sequencing of pre-customised 
genes in panels more attractive for routine use. 
The paraffin block at room temperature is the 
choice for potential, subsequent NGS profiling. To 
date, several platforms (SNaPshot Proteomics™ 
[AVMBioMed™, Limerick, Pennysylvania, USA], 
MassARRAY MALDI-TOF mass spectrometry, etc.) 
are available for the massively parallel testing of 
genetic alterations in NSCLC.62,63 For poor quality 
specimens, a manual macro- or microdissection 
enrichment strategy, which can result in highly 
purified tumour cells for DNA extractions or 
repeated biopsies, are requisite.64 Enrichment 
strategies, such as laser capture microdissection 
or flow cytometric sorting for isolation of 
tumour cells from small biopsies, should be used 
cautiously because of their typically low yields  
of DNA.

Fine-Needle Aspiration and Cell Block

Cytology includes a variety of materials, such as 
fine-needle aspirations (FNA), bronchial brushing 
or lavage, sputum, and effusions. The most 
important parameter is the proportion of tumour 
cells to non-tumour cells. FNA usually show the 
highest tumour cell count, in comparison with 
exfoliative cytology materials.65,66 All materials 
need critical pre-analytic evaluation to provide 
tumour cell enrichment for molecular testing.67,68 
Samples should be immediately fixed for 
Papanicolaou staining, using alcohol-based spray 
or liquid 100% ethanol; alternatively, air-dried 
preparations may be stained with May-Grünwald-
Giemsa (MGG). In the case of ROSE, a Diff-
Quik Stain Kit (Polysciences, Inc., Warrington, 
Pennsylvania, USA) is an option. Especially for 
brushing and bronchial lavage, an acceptable 
option is the use of liquid-based cytology.68 
Advantages include the elimination of blood 
in excessively haemorrhagic samples and the 

possibility to use leftover material for ancillary 
tests as immunocytochemical staining. Liquid-
based preparations may overcome the need for 
ROSE, reducing artefactual problems related to 
smear and fixation time. In different studies, EGFR 
mutation analysis on cytological material gave 
reliable results. High concordance rates between 
cytology and histology have been demonstrated 
in the literature.69 Exfoliative cytological material 
generally missed a higher proportion of <25% of 
EGFR mutations. 

The use of CB is also suggested because most 
commercially available kits are validated for 
FFPE materials.70 The loss of tumour cells and 
hypocellularity are the two main disadvantages 
of CB. Molecular tests can be performed on 
direct smears, liquid-based preparations, and 
materials stored on filter papers.71 Both MGG and  
Pap-stained archived slides may be used but  
air-dried smears are significantly superior to  
Pap-stained slides in terms of higher EGFR 
mutation rates. Knoepp and Roh71 suggested 
the use of Diff-Quik staining because of better 
preservation of DNA, whereas Killian et al.72 
demonstrated DNA degradation in archived  
Pap-stained smears as a result of alcohol fixation. 
Contrastingly, there are also studies showing 
superiority or equivalency of Pap- to MGG-stained 
slides.73 DNA quality and homogeneity of tumour 
cells within materials have been shown to be more 
reliable parameters than quantity.73 CB represent 
a ‘hybrid preparation’ between cytological and 
histological specimens, due to FFPE of the FNA 
material.74 The main advantages of CB include 
being able to identify the architectural pattern  
perform ancillary techniques, such as IHC.75,76 
Differing from direct smears, CB do not require 
particular molecular validation as with histological 
material.77 In order to evaluate the possibility 
of a significant reduction in neoplastic content 
and assess the neoplastic cellularity, it is good 
practice to stain first and use CB sections last.78 
This could significantly reduce the risk of false 
negative results. It is important, particularly in the 
case of low tumour content, to select neoplastic 
cells on H&E stained slides to guide tumour cell 
dissection.74 On the other hand, adopting different 
serial sections from CB could allow the molecular 
analysis on the entire cell nucleus.78 An important 
limitation of direct smears is the low quality of 
nucleic acids.78-80 To date, a validated cell transfer 
technique allows the feasibility of molecular 
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testing on DNA extracted from neoplastic cells 
derived from routine smears.81,82 

Another possibility is by liquid-based cytology, 
in particular, to avoid problems correlated with 
inadequate triage of aspirated material by 
untrained clinicians.83,84 In this preparation, the 
FNA is completely expelled in an alcohol-based 
fixative, such as CytoLyt® (Hologic, Marlborough, 
Massachusetts, USA) or CytoRich™ Red (Thermo 
Fisher Scientific Inc. UK, Leicestershire, UK) 
solutions, in order to generate a cell monolayer 
slide.85 Several studies have described the 
feasibility of liquid-based cytology for molecular 
purposes.74,85-89 Neoplastic cells are scraped 
directly into an Eppendorf collecting tube, or 
obtained by cell lifting with the Pinpoint solution 
of the Pinpoint Slide DNA Isolation System (Zymo 
Research, Irvine, California, USA).90,91 A crucial 
point for molecular analysis is the coverslip of 
smears in order to scrape tumour cells by a 
dedicated blade.74 Another possibility to reduce 
the time of preparation is represented by the 
‘freezer method’, in which slides were frozen and 
a blade was used to remove the coverslip.92 An 
important issue was the necessity for neoplastic 
cell enrichment, particularly when low sensitive 
techniques were employed.77,93

BIOFLUIDS 

Sputum and Bronchoalveolar Lavage

Sputum is an important source of nucleic acids, 
proteins, and other analytes that reflect the 
status of different organs.94 Different experiences 
focalised the attention on sputum to investigate 
EGFR status in NSCLC patients. In a large series 
(N=50), Wu et al.95 identified a high concordance 
rate between sputum and tissue samples (74%).95 
Hubers et al.96 reported a specificity of 100% but 
low sensitivity of 50%. In addition to predictive 
purposes, sputum could also be adopted for 
diagnostic aims and for secondary prevention.97 
Recent evidence suggested the possibility 
to analyse microRNA (miRNA) in sputum as 
a non-invasive tool for NSCLC diagnosis.98 In 
the experience of Bagheri et al.,98 the authors 
identified expression of miR-223 in sputum as 
a useful diagnostic biomarker to detect NSCLC 
patients. In order to increase either sensitivity or 
specificity, Su et al.99 implemented the analysis of 
two different biomarkers in sputum (miR-21, miR-

31, and miR- 210, and methylation of RASSF1A, 
PRDM14, and 3OST2 genes). Bronchoalveolar 
lavage (BAL) is a non-invasive procedure 
useful for diagnostic purposes in different lung 
diseases.100 Tuo et al.101 identified the potential role 
of P16INK4a gene promoter methylation in both 
BAL and sputum as a diagnostic biomarker for 
NSCLC, but because of the low sensitivity, it is not 
suitable as a screening tool. Ren et al.102 showed 
that SHOX2 and RASSF1A methylation in BAL can 
increment the detection rate of lung cancer, with 
high sensitivity and specificity. Kim et al.103 showed 
the high diagnostic role of five miRNA (miR-21, 
miR-143, miR-155, miR-210, and miR-372) both in 
sputum and BAL, notably in the early stage of the 
disease. However, for these biomarkers, careful 
attention should be paid to possible artefacts, 
for example FFPE DNA bisulphite conversion. 
FFPE DNA bisulphite conversion leads to a 
challenging methylation sequencing data process 
due to C→T conversion. Bisulphite sequences are 
not perfectly complementary to the standard 
reference genome and, in these cases, special 
alignment tools are necessary.104

Blood

Due to delays in diagnosis, a high percentage 
(approximately 70%) of NSCLC patients only have 
small tissue samples (biopsies and cytological 
specimens) available for either morphological 
diagnosis or molecular purposes. 105 To avoid 
inadequate results, the ‘liquid biopsy’ represents 
a valid sample to assess the molecular status of 
EGFR.106 To date, the only analyte approved for 
EGFR molecular assessment is circulating tumour 
DNA (ctDNA) extracted from plasma in patients 
either with diagnosis of advanced NSCLC before 
any treatment and without the availability of  
tissue (basal setting), or with resistance to  
treatment with first- or second-generation TKI 
for the detection of EGFR exon 20 p.T790M 
(progression setting).106 The most important issues 
related to ctDNA regard the low concentration, 
0.5% of cell-free DNA, short half-life of 
approximately 15 minutes, and the modification of 
concentration during the disease.107,108 For these 
reasons, the International Association for the  
Study of Lung Cancer (IASLC) established a 
statement paper with recommendations for liquid 
biopsy management.109 In Phase III randomised 
clinical trials for gefitinib (IPASS) and afatinib 
(LUX-Lung 3), ctDNA was extracted from serum. 
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The analysis using real-time PCR showed a low 
sensitivity, 43.1% and 28.6%, respectively.109 An 
increase in sensitivity, with 100% specificity, 
was obtained in the Phase IV clinical trial for 
gefitinib (IFUM) and the Phase III clinical trials for 
afatinib (LUX-Lung 3 and LUX-Lung 6) in which 
the analyses were carried out on plasma, 65.7% 
and 60.5%, respectively.109 Increased sensitivity 
was obtained by Reckamp et al.,110 using a NGS 
approach. The authors showed sensitivity of 
93.0%, 100%, and 87.0%, and a specificity of 
94.0%, 100%, and 96.0% for p.T790M, p.L858R, 
and exon 19 deletions, respectively, compared 
with matched tissue samples.110 Malapelle et 
al.53 showed specificity of 100% and sensitivity 
of 90.5% by analysing ctDNA extracted from 
either plasma or serum from each patient (basal 
and progression settings) by using an ultradeep 
NGS approach. The same panel was adopted in 
the experience by Pisapia et al.111 who showed 
8% EGFR mutated cases on plasma samples 
(n=63) in basal NSCLC patients. All the mutations 
were confirmed by digital PCR.111 In the AURA 
study, Oxnard et al.112 showed, by using a high 
sensitivity BEAMing digital PCR (Sysmex Co., 
Kobe, Japan), different sensitivity and specificity 
when considering different EGFR mutations, the 
authors particularly focussed on the lower rate for 
the EGFR exon 20 p.T790M. Sensitivity was 82.3%, 
86.3%, and 70.3%, and specificity was 97.5%, 
96.5%, and 69.0% for p.E746_A750delELREA, 
p.L858R, and p.T790M, respectively.

REQUIREMENTS, PERSPECTIVES, AND 
FUTURE DEVELOPMENTS

Advanced genome sequence technologies 
have initiated new perspectives in molecular 
diagnostics. Novel possibilities, including 
obtaining multiple genome sequences rapidly 
and at relatively contained costs, are the result of 
new approaches to next-generation sequencing, 
especially compared to conventional sequencing 
techniques. This makes it possible to search for 
multiple mutations in the same gene, as well as 
identify mutations of different genes. Currently, 
application in routine clinical practice is limited 
by low distribution in companies and by the high 
expertise necessary for critical interpretation 
of genetic data. Therefore, only the availability 
of series with significant numbers and complex  
case-mixes can serve as candidates for the  

proposal of pilot projects that aim to validate 
NGS platform application in international health 
systems.113,114 Future projects will investigate NGS 
methods in pathology, verifying  performance 
indicators such as the efficacy, efficiency, and 
reproducibility of plasma versus tissue NGS 
molecular tests. Units of oncology molecular 
pathology should be able to achieve minimum 
adequacy criteria for clinical-oncological 
standards for NSCLC management. 

Issues with the biopsy samples (FNA versus 
transthoracic CNB versus small bronchoscopic 
biopsy versus CB) may be overcome by 
interventional contribution of pathologists in 
radiology or performing a ROSE. Moreover 
a dedicated technical line to the processing 
of ‘sensitive’ samples for molecular profiling 
should be arranged in every oncology molecular 
pathology unit, with a 24–48 hour turnaround 
time for a final diagnostic report of histotype and 
predictive immunohistochemical markers (ALK, 
ROS1, PD-L1). 

The EGFR status should optimally be provided 
5–7 days from receipt of the biopsy, keeping 
leftover material in the archive for NGS profiling. 
In future developments, the complete integration 
of traditional pathological techniques with 
those of molecular biology should result in the 
formulation of a single report, including all the 
theranostic factors necessary for the medical 
oncologists. NGS techniques therefore hold great 
hope for the future, despite current problems 
related to standardisation, clinical interpretation 
of data generated, and reimbursement remaining 
obstacles to implementation in clinical practice. 

The latest biomarker claimed as a potential 
tool in precision medicine for NSCLC is TMB. 
This analysis, akin to that of mismatch repair 
protein expression and microsatellite instability, 
would require tumour-specific protocols and 
guidelines for the interpretation.115,116 Larger 
studies are required to verify whether a high TMB 
is associated with greater probability of response 
to immune checkpoint inhibitors and  to assess 
the validity of this new biomarker to represent 
a real standard of care. Despite the outstanding 
achievements in the management of lung cancer, 
and identification of novel biomarkers, the 
road for precision medicine overlooks a correct 
histological diagnosis. Definitive therapy for 
NSCLC should not be undertaken in the absence 
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