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Deep Learning Strategies for 
Ultrasound in Pregnancy 

Abstract
Ultrasound is one of the most ubiquitous imaging modalities in clinical practice. It is cheap, does not 
require ionising radiation, and can be performed at the bedside, making it the most commonly used 
imaging technique in pregnancy. Despite these advantages, it does have some drawbacks such as 
relatively low imaging quality, low contrast, and high variability. With these constraints, automating 
the interpretation of ultrasound images is challenging. However, successfully automated identification 
of structures within three-dimensional ultrasound volumes has the potential to revolutionise clinical 
practice. For example, a small placental volume in the first trimester is correlated to adverse outcome 
later in pregnancy. If the placenta could be segmented reliably and automatically from a static 
three-dimensional ultrasound volume, it would facilitate the use of its estimated volume, and other 
morphological metrics, as part of a screening test for increased risk of pregnancy complications, 
potentially improving clinical outcomes. 

Recently, deep learning has emerged, achieving state-of-the-art performance in various research 
fields, notably medical image analysis involving classification, segmentation, object detection, and 
tracking tasks. Due to its increased performance with large datasets, deep learning has garnered 
great interest relating to medical imaging applications. In this review, the authors present an overview 
of deep learning methods applied to ultrasound in pregnancy, introducing their architectures and 
analysing strategies. Some common problems are presented and some perspectives into potential 
future research are provided.

INTRODUCTION

In medical imaging, the most commonly  
employed deep learning methods are  
convolutional neural networks (CNN).1-8 Compared 

to classical machine learning algorithms, CNN  
have enabled the development of numerous 
solutions not previously achievable because 
they do not need a human operator to identify 
an initial set of features: they can find relevant 
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features within the data itself. In many cases, 
CNN are better able to identify features than the  
human eye.

CNN have some disadvantages however: they 
need large amounts of data to automatically 
find the right features and processing large 
datasets is both computationally costly and takes 
time. Fortunately, training time can be reduced 
significantly if parallel architectures are used (e.g., 
by using graphics cards). 

In medical imaging, deep learning is increasingly 
used for tasks such as automated lesion detection, 
segmentation, and registration to assist clinicians 
in disease diagnosis and surgical planning. Deep 
learning techniques have the potential to create 
new screening tools, predict diseases, improve 
diagnostic accuracy, and accelerate clinical tasks, 
whilst also reducing costs and human error.⁹¯¹⁷ 
For example, automated lesion segmentation 
tools usually run in a few seconds, much faster 
than human operators, and often provide more 
reproducible results. 

Ultrasound is the most commonly used 
medical imaging modality for diagnosis and 
screening in clinical practice.¹⁸ It presents many 
advantages over other modalities such as 
X-ray, magnetic resonance imaging (MRI), and 
computed tomography (CT) because it does 
not use ionising radiation, is portable, and is 
relatively cheap.¹⁹ However, ultrasound has its 
disadvantages. It often has relatively low imaging 
quality, is prone to artefacts, is highly dependent 
on operator experience, and has high inter- 
and intra-observer variability across different 
manufacturers’ machines.¹⁰ Nonetheless, its safety 
profile, noninvasive nature, and convenience 
makes it the primary imaging modality for fetal 
assessment in pregnancy.²⁰ This includes early 
pregnancy dating, screening for fetal structural 
abnormalities, and the estimation of fetal weight 
and growth velocity.²¹ Although two-dimensional 
(2D) ultrasound is most commonly used for 
pregnancy evaluation due to its wide availability 
and high resolution, most machines also have 
three-dimensional (3D) probes and software, 
which have been successfully employed to  
detect fetal structural abnormalities.²²

Ultrasound has a number of limitations when 
it comes to intrauterine scanning, including 
small field-of-view, poor image quality under 

certain conditions (e.g., reduced amniotic fluid), 
limited soft-tissue acoustic contrast, and beam  
attenuation caused by adipose tissue.²² 
Furthermore, fetal position, gestational age-
induced effects (poor visualisation, skull 
ossification), and fetal tissue definition can also 
affect the assessment.²⁰ As a result, a high level of 
expertise is essential to ensure adequate image 
acquisition and appropriate clinical diagnostic 
performance. Thus, ultrasound examination 
results are highly dependent on the training, 
experience, and skill of the sonographer.²³ 

A study of the prenatal detection of  
malformations using ultrasound images 
demonstrated that the performance sensitivity 
ranged from 27.5% to 96.0% among different 
medical institutions.²⁴ Even when undertaken 
correctly by an expert, manual interrogation  
of ultrasound images is still time-consuming 
and this limits its use as a population-based  
screening tool. 

To address these challenges, automated image 
analysis tools have been developed which are 
able to provide faster, more accurate, and less 
subjective ultrasound markers for a variety of 
diagnoses. In this paper, the authors review 
some of the most recent developments in deep 
learning which have been applied to ultrasound 
in pregnancy. 

DEEP LEARNING APPLICATIONS 
IN PREGNANCY ULTRASOUND 

Deep learning techniques have been used for 
ultrasound image analysis in pregnancy to address 
such tasks as classification, object detection, 
and tissue segmentation. This review covers 
applications in pregnancy. The reviewed papers 
were identified with a broad free-text search on 
the most commonly used medical databases 
(PubMed, Google Scholar etc.). The search was 
augmented by reviewing the references in the 
identified papers. The resulting papers were 
assessed by the authors and filtered for perceived 
novelty, impact in the field, and published date 
(2017-2020). Table 1 lists the literature reviewed 
in this section.

Fetal Segmentation 

Ultrasound is the imaging modality most 
commonly used in routine obstetric examination. 
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Fetal segmentation and volumetric  
measurement have been explored for many 
applications, including assessment of the fetal 
health, calculation of gestational age, and growth 
velocity. Ultrasound is also used for structural and 
functional assessment of the fetal heart, head 
biometrics, brain development, and cerebral 
abnormalities. This antenatal assessment allows 
clinicians to make an early diagnosis of many 
conditions, facilitating parental choice and 
enabling appropriate planning for the rest of the 
pregnancy including early delivery. 

Currently, fetal segmentation and volumetric 
measurement still rely on manual or semi-
automated methods, which are time-consuming 
and subject to inter-observer variability.¹¹ Effective 
fully automated segmentation is required to 
address these issues. Recent developments to 
facilitate automated fetal segmentation from 3D 
ultrasound are presented below:

Namburete et al.⁹ developed a methodology to 
address the challenge of aligning 3D ultrasound 
images of the fetal brain to form the basis of 
automated analysis of brain maturation. A multi-
task fully convolutional neural network (FCNN) 
was used to localise the 3D fetal brain, segment 
structures, and then align them to a referential 
co-ordinate system. The network was optimised 
by simultaneously learning features shared 
within the input data pertaining to the correlated 
tasks, and later branching out into task-specific  
output streams.

The proposed model was trained on a dataset of 
599 volumes with a gestational age ranging from 
18 to 34 weeks, and then evaluated on a clinical 
dataset consisting of 140 volumes presenting 
both healthy and growth-restricted fetuses from 
different ethnic and geographical groups. The 
automatically co-aligned volumes showed a good 
correlation between fetal anatomies.

Table 1: Literature reviewed.

Publication Objective Approach

Fetal segmentation

Namburete et al.⁹ 

(2018)

Segmentation and alignment (brain) Modified FCN

Torrents-Barrena et 

al.²⁵ (2019)

Segmentation (whole fetus) Several approaches

Philip et al.²⁶ (2019) Segmentation and measurement (heart) 3D-U-net

Al-Bander et al.¹¹ 

(2020)

Segmentation (head) Mask-RCNN + Resnet

Placental segmentation

Qi et al.²⁷ (2017) Anatomy recognition ResNet

Looney et al.²⁸ (2017) Segmentation Parallel CNN

Looney et al.²⁹ 

(2018)

Segmentation OxNNet

Oguz et al.³⁰ (2018) Segmentation CNN

Yin et al.³¹ (2020) Anatomy recognition Multi-class FCN

Hu et al.³² (2019) Segmentation Modified U-Net

Torrents-Barrena et 

al.³³ (2019)

Segmentation CGAN

Zimmer et al.³⁴ 

(2019)

Segmentation 3D CNN

CGAN: conditional generative adversarial network; CNN: convolutional neural networks; FCN: fully convolutional 
neural network; RCNN: Regional Convolutional Neural Network. 
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Torrents-Barrena et al.²⁵ proposed a radiomics-
based method to segment different fetal 
tissues from MRI and 3D ultrasound. This is the 
first time that radiomics (the high-throughput 
extraction of large numbers of image features 
from radiographic images35) has been used 
for segmentation purposes. First, handcrafted 
radiomic features were extracted to characterise 
the uterus, placenta, umbilical cord, fetal 
lungs, and brain. Then the radiomics for each 
anatomical target were optimised using both 
K-best and Sequential Forward Feature Selection 
techniques. Finally, a Support Vector Machine 
with instance balancing was adopted for accurate 
segmentation using these features as its input. In 
addition, several state-of-the-art deep learning-
based segmentation approaches were studied 
and validated on a set of 60 axial MRI and 
3D ultrasound images from pathological and 
clinical cases. Their results demonstrated that a 
combination of 10 selected radiomic features led 
to the highest tissue segmentation performance. 

Philip et al.²⁶ proposed a 3D U-Net based fully 
automated method to segment the fetal annulus 
(base of the heart valves). The aim of this was to 
build a tool to help fetal medicine experts with 
assessment of fetal cardiac function. The method 
was trained and tested on 250 cases (at different 
points in the cardiac cycle to ensure that the 
technique was valid). This provided automated 
measurements of the excursion of the mitral and 
tricuspid valve annular planes in form of TAPSE/
MAPSE (TAPSE: tricuspid annular plane systolic 
excursion; MAPSE: mitral annular plane systolic 
excursion). This demonstrated the feasibility of 
using this technique for automated segmentation 
of the fetal annulus.

Al-Bander et al.¹¹ introduced a deep  
learning-based method to segment the fetal 
head in ultrasound images. The fetal head 
boundary was detected by incorporating an 
object localisation scheme into the segmentation, 
achieved by combining a Mask R-CNN (Regional 
Convolutional Neural Network) with a FCNN. 
The proposed model was trained on 999 3D 
ultrasound images and tested on 335 images 
captured from 551 pregnant women with a 
gestational age ranging between 12 and 20 weeks. 
Finally, an ellipse was fitted to the contour of the 
detected fetal head using the least-squares fitting 
algorithm.³⁶ Figure 1 illustrates the examples of 
fetal head segmentation.

Placental Segmentation 

The placenta is an essential organ which plays a 
vital role in the healthy growth and development 
of the fetus. It permits the exchange of respiratory 
gases, nutrients, and waste between mother and 
fetus. It also synthesises many substances that 
maintain the pregnancy, including oestrogen, 
progesterone, cytokines, and growth factors. 
Furthermore, the placenta also functions as a 
barrier, protecting the fetus against pathogens 
and drugs.³⁷ 

Abnormal placental function affects the 
development of the fetus and causes obstetric 
complications such as pre-eclampsia. Placental 
insufficiency is associated with adverse pregnancy 
outcomes including fetal growth restriction, 
caused by insufficient transport of nutrients 
and oxygen through the placenta.³⁸ A good 
indicator of future placental function is the size 
of the placenta in early pregnancy. The placental 
volume as early as 11 to 13 weeks’ gestation has 
long been known to correlate with birth weight 
at term.³⁹ Poor vascularity of the first-trimester 
placenta also increases the risk of developing 
pre-eclampsia later in pregnancy.⁴⁰ 

Reliable placental segmentation is the basis of 
further measurement and analysis which has the 
ability to predict adverse outcomes. However,  
full automation of this is a challenging task due  
to the heterogeneity of ultrasound images, 
indistinct boundaries, and the placenta’s variable 
shape and position. Manual segmentation 
is relatively accurate but is extremely time-
consuming. Semi-automated image analysis 
tools are faster but are still time-consuming and 
typically require the operator to manually identify 
the placenta within the image. An accurate 
and fully automated technique for placental 
segmentation that provides measurements such 
as placental volume and vascularity would permit 
population-based screening for pregnancies at 
risk of adverse outcomes. Figure 2 illustrates an 
example of placenta segmentation. 

Qi et al.²⁷ proposed a weakly supervised CNN  
for anatomy recognition in 2D placental  
ultrasound images. This was the first successful 
attempt at multi-structure detection in placental 
ultrasound images. 
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The CNN was designed to learn discriminative 
features in Class Activation Maps (one for each 
class), which are generated by applying Global 
Average Pooling in the last hidden layer. An 
image dataset of 10,808 image patches from 
60 placental ultrasound volumes were used to 
evaluate the proposed method. Experimental 
results demonstrated that the proposed method 
achieved high recognition accuracy, and could 
localise complex anatomical structures around 
the placenta. 

Looney et al.²⁸ used a CNN named DeepMedic⁴¹ 
to automate segmentation of placenta in 
3D ultrasound. This was the first attempt to 
segment 3D placental ultrasound using a CNN. 
Their database contained 300 3D ultrasound 
volumes from the first trimester. The placenta 
was segmented in a semi-automated manner 
using the Random Walker method,⁴² to provide 
a ‘ground truth’ dataset. The results of the 
DeepMedic CNN were compared against semi-
automated segmentation, achieving median Dice 

Figure 1: Examples of fetal head segmentation showing the ellipse fitted results on the two-dimensional ultrasound 
sections. 

Manual annotation (blue); automated segmentation (red). 

Adapted from Al-Bander et al.11 

Figure 2: Placenta segmentation of first-trimester pregnancy: A) two-dimensional B-mode plane; B) semi-
automated Random Walker result; C) OxNNet prediction result. 

Adapted from Looney et al.29

A CB
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similarity coefficient (DSC) of 0.73 (first quartile, 
third quartile: 0.66, 0.76) and median Hausdorff 
distance of 27 mm (first quartile, third quartile: 18 
mm, 36 mm). 

Looney et al.²⁹ then presented a new 3D FCNN 
named OxNNet. This was based on the 2D U-net 
architecture to fully automate segmentation of 
the placenta in 3D ultrasound volumes. A large 
dataset, composed of 2,393 first trimester 3D 
ultrasound volumes, was used for training and 
testing purposes. The ground truth dataset was 
generated using the semi-automated Random 
Walker method⁴² (initially seeded by three 
expert operators). The OxNNet FCNN obtained  
placental segmentation with state-of-the-art 
accuracy (median DSC of 0.84, interquartile range 
0.09). They also demonstrated that increasing the 
size of the training set improves the performance 
of the FCNN. In addition, the placental volumes 
segmented by OxNNet were correlated with 
birth weight to predict small-for-gestational-
age babies, showing almost identical clinical 
conclusions to those produced by the validated 
semi-automated tools.

Oguz et al.³⁰ combined a CNN with multi-atlas 
joint label fusion and Random Forest algorithms 
for fully automated placental segmentation. 
A dataset of 47 ultrasound volumes from the 
first trimester was pre-processed by data 
augmentation. The resulting dataset was used to 
train a 2D CNN to generate a first 3D prediction. 
This was used to build a multi-atlas joint label 
fusion algorithm, generating a second prediction. 
These two predictions were fused together using 
a Random Forest algorithm, enhancing overall 
performance. A four-fold cross-validation was 
performed and the proposed method reportedly 
achieved a mean Dice coefficient of 0.863 
(±0.053) for the test folds. 

Yin et al.³¹ proposed a fully automated method 
combining deep learning and image processing 
techniques to extract the vasculature of the 
placental bed from 3D power Doppler ultrasound 
scans and estimate its perfusion. A multi-class 
FCNN was applied to separate the placenta, 
amniotic fluid, and fetus from the 3D ultrasound 
volume to provide accurate localisation of 
the utero-placental interface (UPI) where 
the maternal blood enters the placenta from 
the uterus. A transfer learning technique was 
applied to initialise the model using parameters 

optimised by a single-class model²⁹ trained on 
1,200 labelled placental volumes. The vasculature 
was segmented by a region growing algorithm 
from the 3D power Doppler signal. Based on 
the representative vessels at a certain distance 
from the UPI, the perfusion of placental bed was 
estimated using a validated technique known as 
FMBV (fractional moving blood volume).⁴³

Hu et al.³² proposed a FCNN based on the 
U-net architecture for 2D placental ultrasound 
segmentation. The U-net had a novel  
convolutional layer weighted by automated 
acoustic shadow detection, which helped to 
recognise ultrasound artefacts. The dataset used 
for evaluation contained 1,364 fetal ultrasound 
images acquired from 247 patients over 47 
months. The dataset was diverse because the 
image data was acquired from different machines 
operated by different specialists and presented 
scanning of fetuses at different gestational ages. 
The proposed method was first applied across the 
entire dataset and then over a subset of images 
containing acoustic shadows. In both cases, the 
acoustic shadow detection scheme was proven 
to be able to improve segmentation accuracy.

Torrents-Barrena et al.³³ proposed the first fully 
automated framework to segment both the 
placenta and the fetoplacental vasculature in 
3D ultrasound, demonstrating that ultrasound 
enables the assessment of twin-to-twin transfusion 
syndrome by providing placental vessel mapping. 
A conditional Generative Adversarial Network was 
adopted to identify the placenta, and a Modified 
Spatial Kernelized Fuzzy C-Means combined 
with Markov Random Fields was used to extract 
the vasculature. The method was applied on 
a dataset of 61 ultrasound volumes, which 
was heterogeneous due to different placenta 
positions, in singleton or twin pregnancies of 15 to 
38 weeks’ gestation. The results achieved a mean 
Dice coefficient of 0.75±0.12 for the placenta and 
0.70±0.14 for its vessels on images that had been 
pre-processed by down-sampling and cropping. 

Zimmer et al.³⁴ focussed on the placenta at late 
gestational age. Ultrasound scans are typically 
useful only in the early stages of pregnancy 
because a limited field of view only permits 
the complete capture of small placentas. To 
overcome this, a multi-probe system was used to 
acquire different fields of view and then combine 
them with a voxel-wise fusion algorithm to obtain 
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a fused ultrasound volume capturing the whole 
placenta. The dataset used for evaluation was 
composed of 127 single 4D (3D+time) ultrasound 
volumes from 30 patients covering different 
parts of the placenta. In total, 42 fused volumes 
were derived from these simple volumes which 
extended the field of view. Both the simple and 
fused volumes were used for evaluation of their 
3D CNN based automated segmentation. The 
best results of placental volume segmentation 
were comparable to corresponding volumes 
extracted from MRI, achieving Dice coefficient of 
0.81±0.05.

DISCUSSION 

The number of applications for deep learning 
in pregnancy ultrasound has increased rapidly 
over the last few years and they are beginning 
to show very promising results. Along with 
new advances in deep learning methods, new 
ultrasound applications are being developed to 
improve computer-aided diagnosis and enable 
the development of automated screening tools 
for pregnancy.

A number of deep learning algorithms have 
been presented in this review, showing novel 
approaches, state-of-the-art results, and 
pioneering applications that have contributed 
so far to the pregnancy ultrasound analysis. 
Some methods rely on sophisticated hybrid  
approaches, combining different machine  
learning or image analysis techniques, whilst 
others rely on smart manipulation of the 
dataset such as fusing volumes or applying data 
augmentation. Large quality-controlled datasets 
are enabling single deep learning algorithms to 
be successfully developed still. However, it’s not 
currently possible to compare these methods 
directly, even if designed for the same task, 
because they all use different datasets and 
measurements. 

The technological advances in medical  
equipment and image acquisition protocols 
allow better data acquisition to enhance the 
trained models. The size and availability of 
quality-controlled ground-truth datasets remain  
significant issues to be addressed. The  
performance of deep learning methods usually 
depends on the number of samples. Most of the 
presented methods cannot be independently 
evaluated because their datasets are small and 
not widely available. In addition, models trained on 
one dataset might fail on another generated by a 
different manufacturer’s machine. Large, publicly 
available, and appropriately quality-controlled 
ultrasound datasets are needed to compare 
different deep learning methods and achieve 
robust performance in real world scenarios. 

There is also an urgent need to implement 
deep learning methods to solve relevant 
clinical problems. Very few papers translate the 
simple application of algorithms to a broader, 
practical solution that could be widely used in 
clinical practice. The practical implementation 
of deep learning methods and assessment of 
the correlation between automated results 
and clinical outcomes should be a focus of  
future research.

CONCLUSION

The field of deep learning in pregnancy  
ultrasound is still developing. Lack of sufficient 
high-quality data and practical clinical solutions 
are some of the key barriers. In addition, the 
newest deep learning methods tend to be  
applied first to other more homogeneous  
medical imaging modalities such as CT or 
MRI. Therefore, there is a need for researchers 
to collaborate across modalities to transfer 
existing deep learning algorithms to the field of  
pregnancy ultrasound to achieve better 
performance and create new applications in  
the future. 
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