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Artificial Intelligence in Patients with Congenital 
Heart Disease: Where Do We Stand?

Abstract
Life expectancy of patients with congenital heart disease (CHD) has increased in recent decades; 
however, late complications remain frequent and difficult to predict. Progress in data science has 
spurred the development of decision support systems and could aid physicians in predicting clinical 
deterioration and in the management of CHD patients. Newly developed artificial intelligence (AI) 
algorithms have shown performances comparable to humans in clinical diagnostics using statistical 
and computational algorithms and are expected to partly surpass human intelligence in the near 
future. Although much research on AI has been performed in patients with acquired heart disease, 
little data is available with respect to research on AI in patients with CHD. Learning algorithms in 
patients with CHD  have shown to be promising in the interpretation of ECG, cardiac imaging, and the 
prediction of surgical outcome. However, current learning algorithms are not accurate enough to be 
implemented into daily clinical practice. Data on AI possibilities remain scarce in patients with CHD, 
and studies on large data sets are warranted to increase sensitivity, specificity, accuracy, and clinical 
relevance of these algorithms.

Authors: *Marinka D. Oudkerk Pool,1,2 Dirkjan Kauw,1,2 Hidde Bleijendaal,1 Barbara 
J.M. Mulder,1 Yigal Pinto,1 Berto J. Bouma,1 Michiel M. Winter1

1.	 Department of Cardiology, Amsterdam University Medical Center, University of 
Amsterdam, Amsterdam, the Netherlands

2.	Netherlands Heart Institute, Utrecht, the Netherlands
*Correspondence to m.d.oudkerkpool@amsterdamumc.nl

Disclosure: The authors have declared no conflicts of interest.

Received: 17.02.2020

Accepted: 30.03.2020

Keywords: artificial intelligence (AI), congenital heart disease (CHD), machine learning (ML), 
deep learning (DL).

Citation: EMJ Cardiol. 2020;8[1]:70-81.

The authors have performed a literature search of how state-of-the-
art imaging diagnoses for congenital heart disease are taking place 
with the help of artificial intelligence (AI). There is a clinical unmet need 
for the use of AI in congenital heart disease, and a joint effort is needed 
to spread AI knowledge and applications in the medical field to improve 
diagnosis, treatment, and outcomes for patients. This review gives an overview 
of AI usage in diagnostic imaging, electrocardiograms, and clinical diagnosis in 
patients with congenital heart disease. 
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INTRODUCTION

Improved medical treatment and surgical 
techniques has caused the life expectancy of 
patients with congenital heart disease (CHD) to 
be significantly prolonged.1-3 As these patients 
reach adulthood, late complications such as 
arrhythmias and congestive heart failure occur,1 
resulting in reduced quality of life and life 
expectancy.4 Furthermore, these complications 
often result in unscheduled hospital visits or even 
emergency admissions.3,5-7 Although visits to the 
outpatient clinic are frequent, it remains difficult 
to predict and prevent clinical deterioration.

With the introduction of the electronic medical 
record and the ability to digitally store data 
for diagnostic modalities, such as ECG and 
echocardiography, large amounts of patient data 
have been generated over the past few decades. 
Using machine learning (ML) or deep learning 
(DL) for the analysis of these data has been a 
topic of interest for some years. Progress in data 
science has spurred the development of decision 
support systems which can aid physicians in the 
management of CHD patients and therapeutic 
decision making.4,8,9 Newly developed algorithms 
perform as well as humans in clinical diagnostics 
using statistical and computational algorithms  
to perform recognition, classification, and 
learning tasks, and are expected to outperform 
humans in the near future.10,11

Used in this context, artificial intelligence (AI) 
is an umbrella term for the use of computers to 
model intelligent behaviour. The terms ‘neural 
networks,’ DL, and ML are technical concepts 
that fall under this umbrella but are confusingly 
used interchangeably with the term AI in the 
literature. This review will focus on ML and DL. 
Learning algorithms learn from data given as 
an input, also called the training dataset. The 
algorithm then gets tested on a so-called test or 
validation dataset, which contains new unseen 
data. ML, specifically, refers to algorithms 
that can ‘learn’ patterns from training data 
and then use the learned patterns to classify 
previously unseen data.12 DL algorithms have 
an extra hidden layer, which allows them to 
automatically detect important features from 
the data, while in ML algorithms, the features  
need to be provided manually.4,13 

Although several AI studies have been performed 
in patients with CHD over the past few years, 
data are limited compared to data in patients 
with acquired heart disease.4,8,9,13-16 Considering 
the propensity of CHD patients for developing 
arrhythmias and heart failure, the predictive 
abilities of the AI algorithms could prove to be 
lifesaving. Therefore, the aim of this review is to 
provide an overview of studies investigating the 
potential of AI algorithms with respect to the 
various imaging modalities in patients with CHD.

METHODS

Literature Search

Medline® (Northfield, Illinois, USA) and EMBASE 
(Elsevier, Amsterdam, the Netherlands) were used 
to search for studies published up to 9th August 
2019. The search was developed iteratively for 
synonyms of ‘congenital heart disease,’ ML, DL, 
and AI, both controlled vocabulary (Medical 
Subject Headings [MeSH]) and free-text words. 
Nonhuman studies, case reports, biomarker 
studies, and reviews were excluded. The  
reference list and cited articles were checked for 
additional references.

Selection of Studies

Studies were included if they applied AI 
algorithms for diagnostics (heart sound, 
echocardiography, MRI, CT, electrocardiogram 
analysis, and classification/prediction models, 
for example) in CHD patients. Since the terms AI, 
DL, and ML are used interchangeably, all three 
terms were included in this review. All potential 
articles were read in full by two authors (Ms 
Marinka D. Oudkerk Pool and Mr Dirkjan Kauw). 
Disagreements concerning eligibility were 
resolved by discussion.

Extraction of Data

The extracted data from each paper were author, 
publication year, total number of patients (both 
training and test set), patient population, data 
used for analysis (input data in the algorithm), 
primary outcome (goal of the study), the used 
AI algorithm, and accuracy of the proposed AI 
algorithm. For comparison between the different 
techniques the sensitivity (SE), specificity (SP), 
and accuracy were used. 
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Accuracy is defined as the number of correctly 
classified results compared to the ‘true’ value 
(either positive or negative), as assessed by the 
gold standard technique. 

True positive (TP) is the proportion of actual 
positives that are correctly identified as such. 
True negative (TN) is the proportion of actual  
negatives correctly identified as such. False 
positive (FP) is a negative value identified as 
a positive value, and false negative (FN) is a  
positive value identified as a negative value.  
SE, SP, and accuracy can be defined  
using equations:17-20

SE=100 x

SE=100 x

accuracy = 100 x

RESULTS

In total, 63 articles were potentially eligible for 
this review after removing duplicates. Forty-eight 
articles were considered irrelevant because they 
focussed on biomarkers, genes, mechanical AI, 
were not based on cardiology (either neurology 
or mechanical ventilation), diagnostics (over 
the phone or medication), or comparison study 
in which two or more imaging modalities were 
compared. Twenty-seven articles were read 
in full, after which an additional 11 articles were 
excluded. Two additional articles were selected 
by going through the references. The final 
analysis consisted of 18 articles (Figure 1). 

Topics of these studies included analyses of 
cardiac imaging modalities (echocardiography, 
MRI), ECG, and clinical prediction models using 
AI algorithms. 

Figure 1: Flow diagram of search query.

AI: artificial intelligence; ML: machine learning. 

63 potential 
eligible articles

27 articles read 
in full

16 articles used 
for analysis

Final  
comparison 

with 18 articles

Two extra articles from references:
•	 heart sounds (1)
•	 magnetic resonance (1)

11 excluded:
•	 review (2)
•	 prediction in unborn child (1)
•	 wrong study design (3)
•	 not based on ML or AI (3)
•	 wrong intervention (2)

36 irrelevant:
•	 biomarkers (7)
•	 genes (8)
•	 mechanical AI (6)
•	 not based on cardiology (6)
•	 diagnostics (5)
•	 comparison study (4)

TP
TP + FN 

TP
TN + FP 

TP + TN
TP+TN+FP+FN 
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Table 1: Selected articles.

First author 
(year)

n 
(training 
set)

n 
(test 
set)

Patient 
population

Category 
for 
analysis

Data used for 
analysis

Primary 
outcome

Learning 
algorithm

Accuracy 
(%)

Elgendi et 
al.21 (2015)

27. Unclear how 
data has been 
split.

Patients 
who were 
undergoing 
right heart 
catheterisation

Heart 
sound

Heart sounds 
measured 
with 3M™ 
Littmann® 
3200 Elec-
tronic Steth-
oscope*

Recorded 
heart 
sounds to 
distinguish 
subjects 
with PAH

Linear 
discriminant 
analysis 

SE: 92.86 
SP: 92.31

Gharehbaghi 
et al.22 (2015)

50. Unclear how 
data has been 
split.

Twenty-
eight healthy 
children and 22 
children with 
BAV

Heart 
sound

Heart sounds 
measured 
with Medit-
ron Electron-
ic Stetho-
scope†

Develop 
algorithm 
for detecting 
BAV in 
children

Support 
vector 
machine

72.9 
Practitioner: 
71.60

Gharehbaghi 
et al.9 (2017)

90. Unclear how 
data has been 
split.

Fifty-five 
healthy 
children and 35 
children with 
BAV

Heart 
sound

Heart sounds 
measured 
with Medit-
ron Electron-
ic Stetho-
scope

Detecting 
BAV, healthy, 
or MR from 
heart sound

Combination 
of hidden 
Markolov 
model and 
support 
vector 
machine

86.4

Elgendi et 
al.23 (2018)

60. Unclear how 
data has been 
split.

Patients 
who were 
undergoing 
right heart 
catheterisation

Heart 
sound

Heart sounds 
measured 
with 33M 
Littmann 
3200 Elec-
tronic Steth-
oscope

Recorded 
heart 
sounds to 
distinguish 
subjects 
with PAH

Linear 
discriminant 
analysis

SE: 84.00 
SP: 88.57

DeGroff et 
al.24 (2001)

69 used for both 
training and 
validation

Paediatric 
patients

Heart 
sound

Heart sounds 
measured 
with Cam-
bridge Heart 
Sound Micro-
phone

Distinguish 
between 
innocent and 
pathological

Artificial 
neural 
network

SE: 100.00 
SP: 100.00

Sepehri et 
al.25 (2009)

60 60 Heart sounds 
from database 
(both healthy 
and with CHD)

Heart 
sound

Phonocardi-
ogram and 
electrocardi-
ogram

Identifying 
children with 
congenital 
heart 
disease

Artificial 
neural 
network

93.6

Thompson 
et al.26 (2018)

603. Unclear 
how data has 
been split.

Heart sounds 
from database 
(John Hopkins 
Outpatient 
Center, 
Baltimore, 
Maryland)

Heart 
sound

Heart sounds 
recorded 
with an elec-
tronic steth-
oscope with 
correspond-
ing ECG

Distinguish 
between 
innocent and 
pathological

Not specified 88

Bhatikar et 
al.27 (2004)

241. Unclear how 
data has been 
split.

Heart sounds 
from database 
(The Children's 
Hospital, 
Denver, 
Colorado)

Heart 
sound

Heart sounds 
from a 
microphone 
optimised for 
low frequen-
cies

Diagnosis 
of heart 
murmurs in 
paediatrics

Artificial 
neural 
network

SE: 83.00 
SP: 90.00
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First author 
(year)

n 
(training 
set)

n 
(test 
set)

Patient 
population

Category 
for 
analysis

Data used for 
analysis

Primary 
outcome

Learning 
algorithm

Accuracy 
(%)

Sepehri et 
al.28 (2016)

134 129 Children 
referred to the 
hospital

Heart 
sound

Phonocardi-
ogram and 
electrocardi-
ogram

Identifying 
children with 
congenital 
heart 
disease

Arash-Band 87.45

Diller et al.4 
(2018)

159 40 Patients 
undergoing 
routine 
transthoracic 
examinations

Ultra-
sound

Echocardio-
graphic data

Discriminate 
between 
patients with 
TGA after 
atrial switch 
operation, 
patients 
with ccTGA 
and normal 
controls

Convolution 
neural 
network

98

Pereira et 
al.16 (2017)

163 91 Boston 
Children’s 
Hospital 
database

Ultra-
sound

Echocardio-
graphic data

Detecting 
CoA in 
newborns 
via 
ultrasound

Support 
vector 
machine

Not 
mentioned

Neukamm et 
al.29 (2013)

30. Unclear 
about split 
between sets.

Patients with 
Tetralogy of 
Fallot after 
pulmonary 
valve 
replacement

Ultra-
sound

End-diastol-
ic volume, 
end-systolic 
volume, and 
ejection frac-
tion

Volumetric 
assessment 
compared 
to gold 
standard 
MRI

Knowledge-
based

EDV; SE: 
100.00, SP: 
86.00 
ESV; SE: 
78.00, SP: 
86.00 
EF; SE: 
75.00, SP: 
43.00

Nyns et al.30 
(2016)

17. Unclear about 
split between 
sets.

Children and 
adolescents

MRI Ventricular 
volume-
try, using a 
short-axis 
cine stack

Evaluate 
feasibility, 
accuracy 
and labour 
intensity 
compared to 
conventional 
Simpson’s 
method

Knowledge-
based

EDV: 82.00 
ESV: 93.00 
EF: 73.00

Yang et al.13 
(2002)

106 used for 
both training and 
testing.

ECG from 
database 
(Nagoya 
University 
Hospital, 
Nagoya, 
Japan)

ECG ECG features: 
waveforms, 
and voltages 
of upright 
and negative 
deflections

Differentiate 
between 
ASD and 
non-ASD

Artificial 
neural 
network

ACC: 91.50 
SE: 91.40 
SP: 91.70

Ruiz-
Fernandez 
et al.8 (2015)

2432 used for 
both training and 
testing.

Children 
heart disease 
database

Classi-
fication 
model

Presurgical 
and postsur-
gical data

Classifying 
the risk of 
paediatric 
cardiac 
surgery

Multilayer 
Perceptron;

Radial Basis 
Function;

Self-
organising 
Map;

Decision 
Tree

99.87; 
95.60; 
81.79; 
80.09

Table 1 continued
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Table 1 shows an overview of each selected 
article found in this search. No articles on 
CT in CHD patients were found during  
this search.4,8,9,13-16,21-31

Patient Population

In total, 15,244 patients were analysed: 10,354 
adults (35% male; 33% female; 32% no gender 
described; mean age of 33.30 ±13.00 years), 
1,858 children (>2 years old; mean age of 9.22 
±1.09 years [42% of patients]; 58% no age 
described), and 4,099 were infants (<2 years 
old; age not described). Diagnoses of CHD of 
varying complexity were made in 14,532 (95.33%) 
patients and 712 (4.67%) patients were included 
as a healthy control group. 

Learning Algorithms

In the 18 analysed articles, 15 different AI 
algorithms were used. The most used technique 
was the artificial neural network (ANN) in four 
of the articles (22%). Table 2 gives an overview 

of all techniques used in this review. Nine out 
of 18 articles analysed the use of ML in heart 
sounds (50%). The other articles analysed 
echocardiography (n=3, 17%), MRI (n=1, 6%), ECG 
(n=1, 6%), as well as prediction or classification 
models (n=4, 22%). 

Heart Sound Analysis

Nine articles aimed to distinguish between 
pathological or innocent murmurs using ML on 
sound recordings from an electronic stethoscope. 

The study by DeGroff et al.24 aimed to determine 
pathological from innocent murmurs using 
spectral resolution and frequency range as input. 
Using an ANN, they found high SP and SE (both 
>90.0%). Sepehri et al.25 also found high accuracy 
(93.6%) using an ANN based on spectral and 
timing properties of the sound recordings of 
heart sounds of murmurs. The algorithm was 
trained on 60 normal and 60 pathological heart  
sound recordings. 

First author 
(year)

n 
(training 
set)

n 
(test 
set)

Patient 
population

Category 
for 
analysis

Data used for 
analysis

Primary 
outcome

Learning 
algorithm

Accuracy 
(%)

Ruiz et al.14 
(2019)

93 patients. 
Unclear about 
split between 
sets.

Infants with 
single-ventricle 
physiology

Pre-
diction 
model

Inpatient 
data

Predict 
critical 
events 
early and 
accurately

Naïve Bayes SE: 84.00 
SP: 81.00

Diller et al.15 

(2018)
8.015 2.004 Adult patients 

under active 
follow-up 
in Royal 
Brompton 
Hospital, 
London, UK

Classi-
fication 
model

Patient data, 
including 
diagno-
sis, clinical 
status, and 
medication

Categorise 
patients in 
diagnostic 
and disease 
complexity 
subgroups

Deep 
Learning

90.20

Chiogna et 
al.31 (1996)

457 114 Neonates Classi-
fication 
model

21 ques-
tions based 
on clinical 
presentation, 
blood gasses, 
and imaging 
modalities

27 
congenital 
heart 
disease 
classes 

Decision tree 59.00

Table 1 continued

*Saint Paul, Minnesota, USA. 

†Welch Allyn®, Skaneateles Falls, New York, USA. 

ACC: accuracy; ASD: atrial septal defect; BAV: bicuspid aortic valve; ccTGA: congenitally-corrected transposition 
of great arteries; CHD: congenital heart disease; CoA: coarctatio aortae; EDV: end-diastolic volume; EF: ejection 
fraction; ESV: end-systolic volume; MR: mitral regurgitation; PAH: pulmonary artery hypertension; SE: sensitivity; SP: 
specificity; TGA: transposition of great arteries.
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Table 2: Overview of artificial intelligence algorithms used in the review. 

Support vector 
machine (SVM)

The SVM searches for the best separation line or decision boundary (also called the maximum 
margin hyperplane) between two groups of data. The maximum margin is the equidistance between 
the closest vectors of both groups. These two vectors are called the support vectors. The maximum 
margin hyperplane is determined by the training dataset. Any new vector from the testing or 
validation dataset will fall on one side of the hyperplane or the other; based on this, the vector is 
sorted into the correct class.9,25 

Decision tree 
(DT)

In a DT, the algorithm is dividing the data into different groups. During each separation, the algorithm 
tries to maximise the number of vectors from a certain category. Rules for separation are generated 
by following the path from branch to leaf; however, since a lot of paths are possible, it can reach 
a considerable size. DT are not very powerful on their own but can be used in other methods that 
leverage their simplicity.8 

Knowledge-
based

The knowledge-based algorithm tries to reconstruct shapes of the heart based on anatomical 
landmarks. The database already contains information of reconstructed 3D surface models of the 
preferred anatomy. The algorithm will reconstruct the requested anatomy from a new patient based 
on data out of the database.30

Arash-band 
method

Every heart disease has a discriminative frequency band, named the Arash-Band. The Arash-Band 
is defined as the spectral energy band that provides maximum discrimination with respect to the 
normal condition. The Arash-Band is calculated during the training phase, using statistical techniques 
as the discriminating tools for the band selection.28

Linear 
discriminant 
analysis (LDA)

The LDA tries to find a linear combination of features to separate between two or more classes. 
The LDA has continuous independent variables (the features) and the class label as a continuous 
dependent variable.21

Hidden Markov 
model (HMM)

A Markov model can be used to calculate a probability for an observable event, an HMM also looks at 
hidden events, such as part-of-speech tags. In an HMM there is a hidden Markov layer, which contains 
a Markov chain. A Markov chain is a model that calculates the probabilities of sequences of random 
variables. A Markov chain only takes into account the current state and does not account for any 
previous state.9

Self-organising 
map (SOM)

This algorithm represents competitive learning, all neurons compete to be the closest to the input 
value. The Euclidian distance is used to measure similarities between the input value and each 
neurons’ weight in order to choose the winning neuron. Afterwards, the weight of the winner and its 
neighbours is updated for the next input value.8

Naïve Bayes (NB) The NB assumes that every feature is independent of the value of any other feature. The classifier 
is based on Bayes theorem, meaning the probability of A happening, given B has occurred is equal 
to the probability of B happening, given A has occurred times the probability of A, divided by the 
probability of B. The NB is an oversimplification of assumptions but tends to work quite well in 
complex problems.14

Deep learning 
(DL)

Deep Learning refers to every algorithm with multiple layers, making it deep. In the article by Diller et 
al.,15 it is referred to a combination of convolutional network and a dense network. A dense network is 
a network in which the number of links between nodes is close to the maximal number of nodes.15

Artificial neural 
network (ANN)

The neural networks are made to mimic the neural networks in the brain. The neural network usually 
consists of an input layer, one or more hidden layers, and an output layer. The input values represent 
the dendrites going to a neuron, which then ends in the output signal, representing the axon. The 
neuron determines if the sum of the input values is important and if they get passed along to the 
output value. The neuron is represented by the so-called activation function. The weighted sum of 
the input values is applied in the activation function (most common functions are the threshold, 
sigmoid, rectifier, or hyperbolic tangent function). Every activation function has a different method 
to determine how it will be activated. If the weighted sum is high enough, the signal will be passed 
onto the output value. Every input value is connected to every hidden layer neuron, from which one 
value is passed to the output layer neuron, after which one value is the output value. The output 
value can be binary, categorical, or continuous. The predicted output value is compared to the actual 
output value. Using a cost-function, the error between the output values is compared, this error is fed 
back to the neuron, and the weights of the input are updated (this is called backpropagation). This 
process is repeated for all the values of the training dataset. After which the final weights are applied 
to the test or validation dataset.24,27
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To evaluate the algorithm, it was tested with 
60 either innocent or pathological murmurs 
to correctly identify first and second heart 
sounds. Other articles used multiple algorithms 
to distinguish between a pathological or 
innocent murmur, namely linear discriminant 
analysis, support vector machine, a combination 
between hidden Markov model and support 
vector machine, ANN, and the Arash-band. 
ANN was the most frequently used algorithm 
(n=3, 33%), and yielded the highest accuracy,  
SE, and SP.

Echocardiographic Analysis

AI algorithms were used on echocardiographic 
data to distinguish between structurally  
normal or pathological hearts, or to determine 
cardiac cavity volumes and function. The 
algorithm can be trained to detect change in 
echogenicity in the collected data, which can be 
seen in the wall of the heart. In this manner, Diller 
et al.4 found accuracy of 98% in distinguishing 
between transposition of the great arteries (TGA) 
after an atrial switch operation, congenitally 
corrected-TGA, and normal controls using a 
convolutional neural network (CNN) algorithm. 
The endocardial border was marked by two 
researchers and compared to the border marked 
by a CNN algorithm. A knowledge-based article 

written by Neukamm et al.29 only looked at SE 
and SP and found that making a 3D model out 
of the 2D echocardiogram data is feasible in 
97% of cases; however, results for assessing the 
ejection fraction (EF) were unsatisfactory and 
MRI remains the method of choice. 

MRI

In one of the articles by Nyns et al.,30 MRI 
was used as an input for knowledge-based 
reconstruction of the volume of the right ventricle 
after atrial switch operation in patients with a 
TGA. In a knowledge-based reconstruction, the 
input is compared to a database that contains 
information on the 3D model of the place of 
interest and tries to reconstruct based on this 
database.30 The knowledge-based reconstruction 
was compared to the gold standard, which is the 
Simpson’s method. The Simpson’s method is a 
geometric model in which the right ventricle is 
calculated based on the sum of a cylinder (base 
of the heart to the tricuspid valve).32 The accuracy 
of the end-diastolic volume (82%), end-systolic 
volume (93%), and EF  (73%) were compared. 
Knowledge-based reconstruction is a feasible, 
accurate, and fast method compared to the gold 
standard for measuring right ventricle volumes  
in patients after arterial switch operation.30

Table 2 continued

Convolutional 
neural network 
(CNN)

CNN have a similar algorithm to the ANN, however the input for a CNN is an image as to a value 
in the ANN.  The image gets down sampled by a feature detector (also known by kernel or filter), 
which results in a feature map. The size of the feature detector determines the size of the feature 
map. The bigger the feature detector, the smaller the feature map will be and the bigger the down-
sampling of the original image. Many feature maps will be created to obtain the first convolutional 
layer, using different feature detectors. Trough training the algorithm determines how the feature 
detectors should look to preserve important features from the original image. After the convolutional 
layer, a rectified linear unit function is applied to remove all linearity since images themselves are 
highly nonlinear. When making the feature maps, linearity can occur due to the down sampling. 
Then a pooling layer has been applied. The pooling layer makes the image recognisable even if 
the image has been tilted or shifted and makes overfitting less possible by reducing the size of the 
convolutional layer. Lastly, a flattening layer conducts a similar function as the activation function 
in the ANN. After the flattening layer, the output of this process will be used as an input for an 
algorithm that is similar to the ANN. In the backpropagation not only are the weights adjusted, but 
also the feature detectors, creating a more accurate down-sampling of the image.4

Radial basis 
function 
networks (RBF)

RBF is a type of ANN. The input layer and the hidden layer do not have associated weights. Each 
neuron in the hidden layer represents an RBF. The neurons compute the Euclidean distance between 
the synaptic weights vector and the input values. Over this distance the RBF is applied, which most 
often is the Gaussian function.8

Multi-layer 
perceptron (MLP)

The MLP is an example of feedforward ANN. In general, it refers to multiple layers of perceptrons 
with threshold activation.8,25
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Electrocardiogram Analysis

One article was found using ML on ECG of 
patients with CHD. In this article by Yang et al.,13 
the authors aimed to distinguish atrial septum 
defect from patients with nonatrial septum 
defect and healthy controls’ ECG. The QRS and 
T wave measurements from lead I, lead II, and all 
precordial leads were used as input. A SE of 91.4% 
and SP of 91.7% was found, with an accuracy  
of 91.5% using an ANN. 

Classification Model

In the classification and prediction models, 
the ML algorithms were used to predict 
clinical deterioration, to classify surgical risk, 
or to classify the heart disease using patient 
characteristics. If the output of the network is 
categorical, it will make a prediction model. If the 
output has discrete values, the algorithm will do 
a classification of the data.33 Ruiz-Fernandez et 
al.8 found an accuracy of 99.9% in classifying the 
risk of mortality in paediatric surgery using the 
multilayer perceptron algorithm. The goal of this 
study was to develop a clinical decision support 
system to help cardiologists decide whether 
surgery was indicated. Ruiz et al.14 investigated 
early prediction of critical events in infants using 
a naïve Bayesian model. Thirty-four routinely 
collected data points, such as heart rate, CO2, 
and lactate, were used as input for the models. 
The model was able to detect future events up 
to 1 hour away with a SE of 84.0% and a SP of 
81.0%. Diller et al.15 used DL techniques (statistical 
learning which extracts features from raw  
data) to categorise diagnostic group, disease 
complexity, and New York Heart Association 
(NYHA) class, with an accuracy of 90.2%. In 
addition, they also estimated prognosis of the 
disease of adults with all types of CHD and to 
decide if patients needed to be discussed in the 
multidisciplinary team. Lastly, Chiogna et al.31 used 
a decision tree algorithm to classify neonates 
with CHD into 27 disease classes, compared to an 
expert opinion. Input data consisted of routinely 
clinical data acquired at birth, such as ECG 
data, pO2, heart size based on the chest X-ray, 
partial pressure of CO2, and oligemic lung fields. 
Accuracy of 59.0% was achieved. 

Discussion

This review provides an overview of the 
possibilities of AI for patients with CHD. Although 
AI algorithms have been used for patients since 
2001, relatively few articles have been published 
on this subject. However, AI algorithms are 
gaining popularity in healthcare and especially 
in cardiology.24 This is also demonstrated in this 
review since most articles are of relatively recent 
date (earliest dated 2015). In this review the 
authors found high SE and SP in most categories 
(echocardiographic data, ECG data, and in 
prediction/classification models), which means AI 
algorithms have great potential as an additional 
diagnostic tool in patients with CHD. However, 
the SE, SP, and accuracy are not yet high enough 
to be able to implement these algorithms safely 
in daily practice. 

Most of the articles used ML on heart sounds, 
with high SP and SE. The highest accuracy (94%) 
was found using the ANN algorithm. Heart sound 
analysis is noninvasive, inexpensive to perform, 
and remains an important diagnostic tool in 
both adults and children. Overall, the techniques 
that were used distinguished between healthy 
and pathological sounds only, which might be  
useful as a primary screening tool. Heart sound 
analysis in patients with acquired heart disease 
also showed high SE, SP, and accuracy.34 Ari et 
al.35 managed to distinguish between aortic 
insufficiency, aortic stenosis, atrial septal defect, 
mitral regurgitation, mitral stenosis, or normal 
heart sound with an accuracy of 92%. These 
techniques can establish a diagnosis but do 
not yet determine the severity of the valve 
lesion. However, one could argue that heart 
sound analysis using ML should not be the main  
objective, as other noninvasive methods 
(echocardiography and cardiovascular MRI) are 
likely to be more informative if interpreted by 
ML techniques. The technique could be used 
as a screening tool by general practitioners to 
distinguish who should be sent to the hospital  
for further check-up.

Learning algorithms on noninvasive cardiac 
imaging (echocardiographic and MRI) shows 
a high accuracy when using a CNN algorithm, 
especially in the assessment of cardiac 
volumes.4 AI algorithms have been used for 
echocardiographic imaging since 2006, but 
only started gaining popularity since 2012. Asch 
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et al.36 trained a ML algorithm to automatically 
estimate the left ventricular EF on a database 
of >50 echocardiographic studies, including 
the apical 2- and 4-chamber views, and were 
compared to the left ventricular EF as assessed 
by the echocardiographist or cardiologist. The 
ML algorithm proved less sensitive (90% versus 
93%), but more specific (92% versus 87%), and 
accurate (92% versus 89%), which makes the 
algorithms highly feasible in daily practice. 
However, patients with CHD tend to develop 
problems in their right ventricle. Genovese et 
al.37 analysed 3D quantification of the right 
ventricle size and function in 56 patients 
receiving both cardiac magnetic resonance and 
3D echocardiography exam on the same day. 
Echocardiographic volumes were analysed with 
a ML technique and compared with the cardiac 
MRI using the Bland-Altman and linear regression 
analyses. The automated ML analysis was correct 
in 18 patients (32%) but needed corrections in 
the remaining 38 patients. Although an intraclass 
correlation coefficient of 97% could be reached 
for the end-diastolic volume, 98% for the end-
systolic volume, and 95% for the EF, the accuracy 
of a ML algorithm remains strongly correlated 
with the image quality. It seems likely that with 
increasing image quality, ML algorithms for its 
interpretation will become more reliable.  

As with the echocardiography, cardiac MRI 
combined with ML has been gaining popularity 
and is already being used in daily practice. 
Ruijsink et al.38 tried to analyse the cardiac 
magnetic resonance imaging using DL algorithms 
to automate ventricular function assessment for 
both ventricles, and reached SE of 95%, SP of 
83%, and an accuracy of 89%. In the technique 
described by Nyns et al.,30 the right ventricle was 
automatically analysed, but the key anatomical 
landmarks needed to be selected beforehand. 
More research is needed to evaluate if the DL 
algorithm could also make this process quicker 
with comparable SE, SP, and accuracy.

Remarkably, the sole article on ECG in CHD 
patients dates from 2002, although a lot of ML 
is conducted on ECG data in the general cardiac 
population33,39-43. Adult patients with CHD of 
10 experience arrhythmias, which makes them 
a suitable group to use ML techniques with to 
predict events.44 However, the baseline ECG 
recordings of these patients often already has 
an abnormal appearance and differs between 

patients with the same congenital heart defect, 
further complicating the analysis of the ECG. In 
patients with acquired heart disease, the most 
analysed arrhythmia is atrial fibrillation. Using ML, 
ECG characteristics during sinus rhythm can be 
determined to establish the presence of an atrial 
fibrillation signature during sinus rhythm, with 
high SE (79%), SP (80%), and accuracy of (79%).20 
This algorithm could be used in patients with 
CHD as it seems suitable in left and right bundle 
branch block, premature ventricular contraction, 
atrial premature beat, and paced beat. Further 
research on ML ECG interpretation in patients 
with CHD is warranted and seems feasible.   

ML can also be used to make prediction 
or classification models, which are used to  
determine in which group a specific outcome 
would fit. In patients with acquired heart disease 
the prediction models are mostly used to 
determine an outcome after surgery or to make 
a definitive risk model; however, these models 
perform poorly in predicting outcomes.45,46 The 
model by Ruiz et al.14 in 2016 gave a low accuracy 
when classifying different diagnoses of congenital 
heart defects based on a questionnaire. The 
model made by Ruiz-Fernandez et al.8 in 2019 

could be used in clinical practice because of 
the high accuracy, but no SE or SP is given. 
If the SE, SP, or accuracy is low, more research 
must be carried out or alternative endpoints 
must be chosen. A solution could be found by  
comparing the results to human analysis; if it is 
better than the current gold standard, it could 
be implemented in clinical practice. However, 
an accuracy, SE, and SP above 95% should be 
pursued before implementation is preferred. 

The use of AI algorithms in cardiology has 
gained enormous interest in recent years and is 
predicted to grow even more in the upcoming 
years. In patients with acquired heart disease, 
ML and DL is already being used for imaging 
modalities and outcome prediction. In patients 
with CHD, on the other hand, the authors found 
only 18 articles on learning algorithms. These 
algorithms have high potential in the population 
of patients with CHD. Cardiac evaluation in 
the hospital with ECG and imaging techniques 
are frequent and a great amount of data is  
generated from these patients. Moreover,  
patients with CHD are vulnerable to cardiac 
morbidity and mortality and often experience 
complications. Prediction of deterioration in 
these patients could save lives.
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