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High-Density Lipoproteins and  
Cardiovascular Disease

Abstract
In the search to develop new cardioprotective therapies, considerable interest has focussed on 
approaches for targeting the biological functions of high-density lipoproteins (HDL). This is based 
on data from population and animal studies demonstrating a potentially protective impact of HDL on 
cardiovascular risk. The findings of recent clinical trials of a range of therapeutic interventions aimed 
at promoting HDL have been disappointing and raise considerable uncertainty regarding the potential 
utility of this target. More recent evidence has highlighted the importance of HDL functionality, 
which may ultimately be important in terms of its association with cardiovascular risk. This has led to 
ongoing efforts to develop new risk markers and therapeutics focussing on HDL quality as opposed 
to quantity. The evidence supporting a protective role for HDL and findings of clinical trials of HDL-
targeted therapies are reviewed here.

INTRODUCTION

For >20 years, clinical trials have consistently 
demonstrated that the reduction of levels of 
low-density lipoprotein (LDL) cholesterol results 
in lower cardiovascular event rates, in both the 
primary and secondary prevention setting.1 While 
guidelines for cardiovascular prevention have 
promoted widespread use of LDL cholesterol-
lowering agents for patients at high vascular risk, 
many continue to experience clinical events.2 

This residual risk highlights the need to develop 
additional strategies to achieve a more effective 
reduction of cardiovascular risk in patients with 
atherosclerotic cardiovascular disease. 

EVIDENCE SUPPORTING A PROTECTIVE 
ROLE OF HIGH-DENSITY LIPOPROTEINS

Following the early evidence that patients 
admitted to the coronary care unit with 
myocardial infarction had lower levels of high-
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density lipoprotein (HDL) cholesterol, large 
population studies demonstrated an inverse 
association between HDL cholesterol levels and 
prospective cardiovascular risk.3-6 Similar findings 
were observed in patients achieving very low LDL 
cholesterol levels, in which low HDL cholesterol 
continued to be associated with higher rates 
of cardiovascular events.4 Animal studies 
demonstrated that promoting HDL functionality, 
via direct infusion or transgenic expression of its 
major proteins, had a favourable impact on both 
the burden and composition of atherosclerotic 
plaque.7-12 Functional studies revealing that 
HDL exert favourable effects on inflammatory, 
oxidative, thrombotic, and apoptotic pathways, 
in addition to its well-characterised role in 
reverse cholesterol transport, are likely to  
underscore its impact on plaque.9,13-16

ESTABLISHED LIPID-MODIFYING 
STRATEGIES AND HIGH-DENSITY 
LIPOPROTEINS

Changes in lifestyle factors, including weight 
loss, accompanied by a reduction in abdominal 
adiposity and moderate alcohol consumption, 
have been reported to result in modest increases 
in HDL cholesterol.17 While statin therapy can raise 
HDL cholesterol by 3–15%, in clinical trials this has 
been reported to be independently associated 
with favourable effects of statins on both plaque 
progression and cardiovascular events.18,19 
Fibrates raise HDL cholesterol by 5–20%, 
showing variable effects on cardiovascular events 
in multiple clinical trials.20-22 Where a clinical 
benefit was observed, this was associated with 
an increase in small HDL particle concentration 
but not HDL cholesterol concentration overall.23 
Niacin is the most effective HDL cholesterol-
raising agent currently used in clinical practice. 
While early studies using immediate-release 
formulations of niacin reported favourable effects 
on both angiographic disease and cardiovascular 
events,24 more recent clinical trials of sustained 
formulations failed to demonstrate reductions 
in risk in statin-treated patients.25,26 Niacin can 
prove challenging for patients because many 
experience the side effect of flushing. Efforts 
to administer niacin in combination with a 
prostanoid receptor antagonist reduced the 
rate of flushing, but did not produce clinical 
benefit.25,26 Clinical development programmes, 

accordingly, have sought to develop more 
effective approaches for targeting HDL (Table 1). 

HIGH-DENSITY LIPOPROTEIN 
INFUSIONS

On the basis of favourable effects on 
atherosclerosis and in-stent restenosis with 
infusions of reconstituted HDL,7-9,12 interest 
has focussed on the potential benefits of this  
approach in humans. Early mechanistic studies 
in humans demonstrated that HDL infusions 
increased faecal sterol excretion, a surrogate 
measure of reverse cholesterol transport, 
and improved endothelial function.27,28 A 
number of small clinical trials employed serial 
vascular imaging to evaluate the impact 
of various formulations of delipidated HDL 
on atherosclerotic plaque. The first study 
demonstrated that administration of five 
weekly intravenous infusions of a HDL mimetic  
containing recombinant ApoA-I Milano 
(previously known as ETC-216, now known 
as MDCO-216) promoted rapid regression of 
coronary atherosclerosis in patients following 
an acute coronary syndrome.29 This provided a 
biological rationale to support observations that 
humans carrying ApoA-I Milano demonstrated 
a greater likelihood of longevity and protection 
from cardiovascular disease.30 It also reaffirmed 
findings from preclinical studies, demonstrating 
atheroprotective properties of ApoA-I Milano.31-33 
The finding of regression at both 15 and 45 
mg/kg doses in the human imaging study 
suggested a potential saturation effect of this  
mimetic on lipid transport out of the vessel wall.29

A second clinical development programme of a 
HDL mimetic, a combination of wild-type ApoA-I 
and a phospholipid (CSL-111), demonstrated 
a reduction in plaque lipid and macrophage 
content when administered 5–7 days prior 
to femoral endarterectomy.34 A subsequent 
coronary imaging study in patients following 
an acute coronary syndrome reported a non-
significant trend towards plaque regression 
and an improvement in plaque echogenicity, 
suggesting potentially favourable effects on 
plaque stability.35 The potential for both mimetics, 
with different forms of ApoA-I, to exert beneficial 
effects supported the potential of delipidated 
HDL, as opposed to specific properties  
related to ApoA-I Milano. 
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Approx.: approximately; CETP: cholesteryl ester transfer protein; HDL: high-density lipoprotein. 

Table 1: High-density lipoprotein-targeted therapies and cardiovascular effects in trials.

Therapeutic agent HDL effect Cardiovascular effect

Statins 5–20% increase Associated with benefit on plaque 
progression and clinical events

Fibrates Approx. 20% increase Reduction in clinical events with 
gemfibrozil associated with increase in 
small HDL

Thiazolidinediones 5–20% increase Lowering triglyceride/HDL ratio 
associated with slowing  
plaque progression

Novel PPAR Approx. 20% increase No benefit on clinical events

Niacin Approx. 30% increase Clinical benefit with immediate 
formulation prior to the introduction of 
statins

No benefit with novel formulations in 
combination with statins

CETP inhibitors

Torcetrapib Approx. 60% increase No clinical benefit

Dalcetrapib Approx. 25% increase No clinical benefit. Pharmacogenomics 
suggest potential benefit with  
ADCY9 polymorphism

Evacetrapib Approx. 120% increase No clinical benefit

Anacetrapib Approx. 130% increase Modest clinical benefit associated with 
lowering atherogenic lipoproteins

Obicetrapib Approx. 179% increase Unknown

HDL infusions

ETC-216/MDCO-216 Mild increase efflux Early benefit on plaque not replicated 
in recent studies

CER-001 Mild increase efflux No clear benefit on plaque

Autologous infusions Mild increase efflux Potential benefit on plaque

CSL-111/CSL-112 Greater increase efflux Benefit on plaque histology

No clear benefit on imaging. Event trial 
ongoing

Apabetalone Approx. 8% increase No clear benefit on plaque

Modest outcome trial failed to 
demonstrate clear benefit
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This was reaffirmed by the report that selective 
delipidation of a patient’s HDL, followed by 
autologous infusion, as similarly associated with 
plaque regression.36 

Synthesis of HDL mimetics, in quantities 
sufficient for human use, has proven to be a 
challenge and has required refinement of the 
manufacturing process to produce purified 
mimetics with a low potential for toxicity. This 
has led to a second generation of clinical studies 
which evaluate the impact of HDL mimetics on 
a background of more intensive lipid-lowering 
therapy. The findings to date have been variable. 
A repeat coronary imaging study of the mimetic 
containing ApoA-I Milano failed to demonstrate 
plaque regression.37-39 Another mimetic, which 
contains recombinant ApoA-I and sphingomyelin 
(CER-001), has been evaluated in numerous 
imaging-based trials. While the first study failed 
to demonstrate a favourable benefit for plaque 
burden,40 a post hoc analysis revealed regression 
in those treated with the lowest dose (3 mg/
kg) and in patients with the greatest burden 
of plaque at baseline.41 This observation was 
further tested; however, 10 weekly infusions 
failed to be beneficial.42 Similarly, early 
observations of the potential benefit of CER-
001 on carotid plaque volume and inflammatory 
activity failed to be replicated in prospective,  
randomised clinical trials.43 

Despite the disappointing results of these 
trials, leading to cessation of the MDCO-216 
and CER-001 development programmes, hope  
remains that other HDL mimetics may produce 
cardiovascular benefit. Refined manufacturing 
to produce CSL-112 has progressed to clinical 
evaluation. A large safety study of this  
formulation revealed no adverse clinical 
effects of any concern and a substantial 
increase in ex vivo cholesterol efflux 
capacity.44 The potential improvement in 
lipid-transporting activity is much greater  
than that observed with other mimetics. Given  
the reported association between cholesterol 
efflux activity and protection from adverse 
cardiovascular outcomes, there remains 
considerable interest in the development of this 
mimetic. Accordingly, a large cardiovascular 
outcomes trial is currently in progress to 
determine whether administration of four 
intravenous infusions of CSL-112 will reduce 
cardiovascular event rates in patients following 
an acute coronary syndrome. This represents 

the first definitive attempt to determine whether 
the infusion of some form of HDL will favourably 
reduce clinical events.

CHOLESTERYL ESTER TRANSFER 
PROTEIN INHIBITORS

Cholesteryl ester transfer protein (CETP) 
facilitates the movement of esterified cholesterol 
from HDL to very-low-density lipoproteins 
and LDL in exchange for triglycerides.45 CETP 
inhibition has received considerable attention, 
given its potential to substantially raise HDL 
cholesterol levels. Observational studies have 
reported an association between CETP activity 
and cardiovascular risk, supported by findings 
of genomic investigations.45-48 In animal models, 
therapeutic lowering of CETP activity, using 
antisense oligonucleotides, vaccines, and small-
molecule inhibitors, has been reported to have 
a favourable impact on plaque burden.49-52 As 
a result, multiple development programmes 
have aimed to develop CETP inhibitors, with the 
potential to target the residual cardiovascular risk 
observed in many statin-treated patients. 

However, experience to date with this class 
of agents has proved a challenge. The first 
CETP inhibitor to reach an advanced stage of 
development, torcetrapib, increased the risk of 
cardiovascular events and all-cause mortality in 
a large clinical outcomes trial.53 In parallel, the 
ability of torcetrapib to raise HDL cholesterol 
by >60% and lower LDL cholesterol by 20%, in 
addition to statin therapy, failed to favourably 
impact the progression of carotid intima-media 
thickness and coronary atherosclerosis.54-56 
Subsequent studies revealed that torcetrapib 
possessed off-target effects, including adrenal 
excretion of aldosterone and cortisol, aortic wall 
expression of endothelin, and small elevations in 
blood pressure.53,57,58 Because these changes were 
observed in murine models, which do not express 
CETP, they are likely to reflect a torcetrapib-
specific effect that is not as a result of CETP 
inhibition. Accordingly, there remains interest 
in the development of other CETP inhibitors  
that lack such toxic effects.

A number of CETP inhibitors continued to 
progress in development on the basis that they 
lack torcetrapib-like toxicity. Dalcetrapib is a 
modest CETP inhibitor and raises HDL cholesterol 
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by approximately 25% with no effect on LDL 
cholesterol levels.59,60 A large clinical outcomes 
trial was terminated prematurely because 
dalcetrapib did not reduce cardiovascular event 
rates.61 Evacetrapib is a potent CETP inhibitor 
and raises HDL cholesterol by >120% and lowers 
LDL cholesterol by 25–30% when administered 
as either monotherapy or in combination with 
a statin.62 However, these more potent lipid 
effects did not translate to clinical benefit, with 
another outcome trial stopped due to futility.63 
Anacetrapib is also a potent CETP inhibitor and 
raises HDL cholesterol by >130% and lowers LDL 
cholesterol by 30%.64 A clinical trial with more 
extended treatment demonstrated a significant, 
albeit modest, reduction in cardiovascular 
events when anacetrapib was administered in  
combination with a statin.65 This clinical benefit 
correlated with the degree of lowering of 
atherogenic lipoproteins, as opposed to the 
raising of HDL cholesterol. While this result 
provided some clinical validation that CETP 
inhibition may be cardioprotective, anacetrapib 
accumulates within adipose tissue66 and has not 
progressed to clinical use. 

A number of observations from these CETP 
inhibitor studies provide insights on potential 
clinical utility. All of the trials have demonstrated 
that CETP inhibitor use was associated with 
a lower rate of diagnosis of Type 2 diabetes 
mellitus.67,68 In those patients with diabetes,  
CETP inhibitor use was associated with an 
improvement in glycaemic control.67,68 Whether 
this reflects favourable effects of HDL on 
pancreatic β-cell function,69,70 or an additional 
effect of CETP inhibition, remains uncertain. It  
may also have implications for broader use in 
patients at higher risk, who have evidence of 
prediabetes or insulin resistance. 

Pharmacogenomic analysis of the dalcetrapib 
trial demonstrated a potential clinical benefit 
in patients harbouring a polymorphism of the 
ADCY9 gene on chromosome 16. Patients with the 
AA genotype demonstrated a 39% reduction in 
cardiovascular events with dalcetrapib compared 
with placebo, while patients with the GG 
phenotype demonstrated an increase in events.71 
This finding was supported by the demonstration 
of a greater increase in cholesterol efflux activity 
and lesser rise in C-reactive protein levels with 
dalcetrapib treatment of patients with the AA 
polymorphism.71 This has led to a new clinical trial 

of dalcetrapib, performed exclusively in patients 
identified to have the AA polymorphism.72 A 
similar relationship was not observed with either 
evacetrapib or anacetrapib.73,74 If demonstrated to 
be effective in a prospective trial, it would appear 
to reflect a dalcetrapib-specific phenomenon.

Additional genomic analyses and Mendelian 
randomisation have demonstrated the 
cardioprotective effect of having low CETP  
activity and levels.46,47,75 This benefit was 
associated with reductions in levels of 
atherogenic lipoproteins, rather than raising HDL 
cholesterol. This benefit also appears greater in 
the presence, rather than absence, of HMGCR, 
the target of statins. If correct, this would 
suggest CETP inhibitors are more likely to be 
protective in the absence of concomitant statin 
therapy.75 Accordingly, any further development 
of CETP inhibitors might focus more on LDL-
lowering capability, as opposed to raising of 
HDL cholesterol. Obicetrapib is the most potent 
CETP inhibitor developed to date, with more 
profound effects on LDL and HDL cholesterol, 
using much lower doses than other agents. How 
development of this agent will proceed remains 
to be determined.

ADDITIONAL HIGH-DENSITY 
LIPOPROTEIN-TARGETED STRATEGIES

A number of other approaches have been 
investigated, with regard to their potential impact 
on HDL and cardiovascular risk. Pharmacological 
agonists of the PPAR family have modest effects 
on HDL, with variable impact on clinical outcomes. 
Fibrates are modest PPAR-α agonists, with 
modest HDL cholesterol raising capabilities and 
evidence of cardiovascular benefit in some,76,77 
but not all,22,78 clinical trials. Meta-analyses of 
these trials demonstrated a borderline clinical 
benefit of widespread fibrate use, but more 
definitive benefit when used in patients with 
evidence of hypertriglyceridaemia at baseline.20 
Subsequent analysis of the gemfibrozil studies 
suggested that its cardiovascular benefit may 
be associated with the observed 21% increase 
in small HDL particles.23 In a similar fashion, 
thiazolidinediones are PPAR-γ agonists which 
mildly raise HDL cholesterol in addition to their 
primary role in improving insulin sensitivity. 
The effect of these agents on HDL is likely to 
contribute to their potential clinical benefit, with 
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evidence that reducing the triglyceride/HDL 
cholesterol ratio is most strongly associated with 
the ability of these agents to slow progression 
of coronary atherosclerosis on serial imaging.79 
Attempts to develop more potent PPAR 
agonists,80 or agents targeting multiple PPAR,81 
have had difficulty with either toxicity or a lack 
of clinical benefit. The recent development of 
selective PPAR modulators has the potential to 
derive specific metabolic benefits without the 
toxicity observed with standard PPAR agents,82 
although the clinical benefit of this approach has 
yet to be established. 

Apabetalone is a selective inhibitor of 
bromodomain and extraterminal proteins: 
epigenetic regulators of lipoprotein metabolism, 
inflammation, and vascular calcification.83,84 
Early studies of apabetalone focussed primarily 
on its potential impact on HDL functionality, 
on the basis of reports of stimulated ApoA-I 
synthesis and increase in cholesterol efflux 
capacity in non-human primates.85 Early 
clinical trials of apabetalone in statin-treated 
patients demonstrated modest effects on HDL 
cholesterol levels86 and progression of coronary 
atherosclerosis87 with short-term treatment. 
Pooled analyses of these trials demonstrated 
fewer cardiovascular events in apabetalone-
treated patients compared with those who 
received placebo.87 This led to a moderate-
sized clinical outcomes trial, which failed to 
demonstrate a significant reduction in clinical 
events with apabetalone when administered in 
patients with diabetes and low HDL cholesterol 
levels, following an acute coronary syndrome.88 

Additional approaches to targeting HDL have 
focussed on specific factors implicated in 
reverse cholesterol transport. Upregulation of 
ABCA1, a pivotal factor facilitating cholesterol 
efflux to receptors such as HDL particles, may 
mobilise lipids without necessarily modulating 
systemic HDL concentrations.89 LCAT promotes 
esterification of cholesterol on the surface  
of HDL particles, which is subsequently 
stored within the particle core, maintaining a 
low concentration of free cholesterol and an 
environment favouring ongoing transfer of lipids 
to HDL. Pharmacological LCAT agonists are 
currently undergoing early evaluation in human 
studies.90,91 Advocates of genetic replacement 
therapy have proposed that the ability to 
upregulate hepatic ApoA-I expression may 

have the potential to increase generation of 
nascent HDL particles.92 While early proponents 
of such an approach suggested a potential role 
in patients with genetically low ApoA-I levels, 
evolving approaches in gene editing may provide 
a more widespread therapeutic option in the 
future.

DYSFUNCTIONAL HIGH-DENSITY 
LIPOPROTEINS

While the early work in HDL therapeutics 
focussed on raising HDL cholesterol levels, the 
poor results of clinical trials and lack of association 
between genetic polymorphisms regulating 
HDL cholesterol levels and cardiovascular risk93 
have suggested this may not prove useful. In  
parallel, the potential benefit of HDL infusions, 
in the absence of raising HDL cholesterol levels  
and in addition to reports of the association of 
cholesterol efflux activity with cardiovascular 
risk,94 highlights the likelihood that HDL 
functionality may be more important. This is 
supported by reports of cardiovascular events 
in patients with very high HDL cholesterol 
levels95 and by reports that the functional 
properties of HDL may be impaired in the 
setting of hyperglycaemia, inflammation, 
and carbamylation.96-101 HDL circulates as a 
heterogenous population of particles, varying in 
size and composition of both protein and lipid. It 
may be that different sub-particles may possess 
varying functional activity. The small, lipid-deplete 
particles, as evidenced in infusion mimetics, are 
potent promoters of cholesterol efflux activity. 
Therapeutic increases in small HDL particles 
were reported to be associated with the clinical 
benefit of gemfibrozil.23 In contrast, generation 
of large, cholesterol-rich HDL particles with 
CETP inhibition, though proposed to potentially 
impair efflux activity, was never demonstrated. 
Nevertheless, future approaches to HDL 
therapeutics might consider targeting specific 
HDL subgroups. Measures of dysfunctional 
HDL may also play a role in risk prediction.102 
Furthermore, it is possible that modulating factors 
that render HDL dysfunctional may provide a 
novel approach to therapeutic targeting of HDL 
in patients at a high risk. This remains an active 
area of research interest for investigators still 
working to develop HDL-focussed approaches to 
reducing cardiovascular risk.
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CONCLUSION

Considerable work has tried to enhance 
potentially protective properties of HDL to reduce 
the residual cardiovascular risk in statin-treated 
patients. While raising HDL cholesterol has 
proven to be a disappointing strategy, ongoing 

efforts have focussed on targeting the functional 
activities of HDL. Whether any such strategies 
are ultimately likely to be of clinical benefit will 
require more clinical trials. To facilitate this, the 
field will need to embrace the need to pivot the 
HDL story as a narrative worth pursuing. Only 
time will tell whether this will alter the course of 
cardiovascular risk.
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