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Utility of Evidence-Based Clinical Decision Support 
in Reducing Unwarranted Variations in Diagnosis 

and Treatment of Breast and Lung Cancer

Abstract
Advanced healthcare delivery prolongs life, but it is also associated with preventable patient  
harm such as misdiagnosis, suboptimal treatment, and avoidable care-associated injuries.  
While best practice guidelines are an important tool in reducing unwarranted variation in 
clinical decision-making, their utility in routine care is limited by the complexity and quality of 
recommendations, which a clinician is expected to remember or quickly access.

Well-designed, evidence-based clinical decision support (CDS) tools can help clinicians  
incorporate an often overwhelming reservoir of evidence into their decision-making process.  
They work best when integrated into standard clinical workflow, so that they do not rely on human 
memory for their accurate execution. This review focuses on the use of CDS systems in breast and 
lung cancer, summarising recent findings in the areas of cancer screening, diagnosis, management, 
and image analysis.

By integrating a vast array of complex data into healthcare workflow, CDS systems allow clinicians to 
leverage data to provide the best services, timely decision-making, and health-related quality of life 
for patients with cancer. 

However, to realise the full potential of CDS, further well-designed trials are needed to evaluate such 
tools in real clinical environments, and existing guidelines need to be converted into algorithms that 
can be interpreted by computers.

ADVANCED HEALTHCARE DELIVERY 
PROLONGS LIFE, BUT AT WHAT PRICE? 

It is clear that the delivery of advanced healthcare 
prolongs life. The global average life expectancy 
has almost doubled since 1900, driven by higher 

standards of living, public health interventions, 
and improvements in healthcare.1 However, 
advanced healthcare provision is associated 
with preventable patient harm, including patient 
safety incidents, misdiagnosis, delayed diagnosis, 
and suboptimal treatment. Such events represent 
a serious problem across all healthcare settings.2 
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Clinician diagnostic and treatment decisions  
vary widely. When this variation is associated  
with deviation from best practice, evidence-
based knowledge, unique individual patient 
needs, or patient preferences, it can  
appropriately be labelled ‘unwarranted’. 
Unwarranted variation can be associated with 
morbidity and mortality (Figure 1).3

In one retrospective review of patient records 
(N=14,407) in primary care in England, UK, the 
rate of significant and probably avoidable harm  
was 35.6 per 100,000 patient-years. Most 
of these incidents (61%) were due to  
misdiagnosis, 26% due to medication-related 
problems, and 11% due to delayed referrals. In 
most cases (80%), incidents could have been 
identified sooner, or prevented altogether, if the 
practitioner had followed evidence-based best 
practice guidelines.4

Outpatient diagnostic errors occur in 
approximately 12 million adults in the USA every 
year. Roughly half of these errors are estimated 
to be potentially harmful.5 In outpatient settings, 
delayed cancer diagnosis is considered one of 
the most harmful types of diagnostic errors.5 One 
study found that opportunities to diagnose lung 
cancer were missed in 38% of patients (N=587), 
resulting in significant diagnostic delays.6

A meta-analysis of global observational studies 
found that the pooled prevalence for preventable 
patient harm was 6%, mainly related to medication 
or other treatments. Twelve percent of events of 
preventable patient harm were severe or fatal.7 
The real incidence rate of patient harm may be 
even higher, as automated measures of patient 
safety almost certainly fail to identify all adverse 
events. An alternative method, the Global 
Trigger Tool, was developed by the Institute for 
Healthcare Improvement (IHI). When applied to 
hospital records from three large tertiary care 
centres in the USA, results indicated that adverse 
events occurred in 33% of hospital admissions.8 
While this study did not formally judge whether 
each harm event was avoidable, the study’s 
authors estimated that at least half of all events 
detected fell into that category. They also noted 
that more than 9% of all hospital admissions 
directly resulted from outpatient care-associated 
harms (unpublished data).

Although progress has been made in improving 
the quality of healthcare globally, the World 
Health Organization (WHO) reports that 10% 
of patients are still adversely affected during 
treatment in high-income countries, and a 
considerable proportion of patients globally do 
not receive appropriate, evidence-based care.9

Figure 1: A graphical illustration of variation in treatment decisions and adverse outcomes in healthcare.
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Unwarranted variation in patient care, and the 
resultant patient harm, is a substantial price to 
pay. However, we do not have to pay that price.10 
CDS has the potential to substantially reduce 
unwarranted variation.

CAN WE JUST FOLLOW THE 
PUBLISHED BEST PRACTICE 
GUIDELINES? 

Best practice guidelines are an important tool 
to improve clinical decision-making.11 They 
have been developed for many cancers and 
other disease conditions, directing clinicians 
to the applicable options for a specific patient. 
However, their utility in routine care is limited 
by deployment methods, and the quality of  
the recommendations.

Guidelines are mainly deployed through 
clinical training; clinicians are expected to 
remember them. However, cancer is a complex, 
heterogenous disease that affects patients of all 
ages and backgrounds, making decision-making 
difficult.12 In addition, rapid advancements 
in therapy and our understanding of cancer 
presents a significant challenge for oncologists. 
For instance, over 4 million cancer-related papers 
have been published in peer-reviewed journals,13 
with over 178,000 published in 2020 alone.

Unfortunately, this approach to guideline 
deployment results in roughly half of all patients 
not receiving recommended care.14-16 Because 
of the vast array of options for patients with 
cancer, it is unrealistic to expect clinicians, relying 
on memory alone, to be able to select the most 
appropriate treatment for a specific patient at 
a specific stage of their cancer journey, without 
significant time outlay. Indeed, literature suggests 
that when clinicians have only their training, 
expertise, and experience to rely on, they struggle 
with cognitive limitations and biases.3

Ideally, all best practice guidelines would be 
based on high-quality evidence. However, 
expert consensus often plays a large role. A 
limited pool of well-designed studies means that 
recommendations are often dependent on the 
individual experts involved.17 An evidence review 
of 421 clinical practice guidelines found them to 
be of widely variable quality; only 23% could be 
considered high quality.18

Well-designed, evidence based CDS tools 
may help clinicians to incorporate the often 
overwhelming reservoir of evidence into their 
decision-making process.3 This is especially true if 
such tools have the potential to learn, modifying 
guidelines ‘on the fly’ based on data collected 
during their use.19

WHAT IS CLINICAL DECISION SUPPORT 
AND HOW CAN IT HELP? 

The WHO defines CDS as: “The provision of 
knowledge and patient-specific information 
presented at appropriate times to enhance  
front-line healthcare delivery.”9 CDS encompasses 
all tools that support healthcare, including clinical 
guidelines, computerised alerts and reminders, 
and documentation templates.9 This article 
will focus on computerised CDS systems for 
oncology, many of which can be automated by 
embedding in electronic health records (EHR) or 
mobile devices. 

CDS tools should facilitate the decision-
making process, helping clinicians to adhere to 
guidelines, to quickly diagnose and/or identify 
the most suitable treatment for a specific 
disease, and to gather all the relevant information 
about the patient and their tumour, so that the 
best treatment decisions are made from the start 
(Figure 2). The fundamental elements that a CDS 
tool must consider include tumour characteristics, 
patient characteristics, prior therapy, molecular 
profiling results, combination therapy options, 
and dosage.20 Many algorithms for prediction 
or classification have been implemented in CDS 
systems to diagnose different diseases, and 
most of these systems have a way of ‘learning’ 
from the data,21 offering the opportunity to 
refine guidelines based on patterns in data or 
clinician feedback. In addition, CDS systems 
have been developed to assist clinicians with 
the interpretation of imaging data, such as CT 
scans or MRIs, with the intention of reducing 
unwarranted variability.22,23

CDS systems support clinicians by removing the 
need to rely on human cognition, as guidelines 
and protocols are built into standard clinical 
workflow.3 This implementation strategy is critical 
to the success of any CDS system.24-26
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RECENT RESEARCH INTO THE UTILITY 
OF CLINICAL DECISION SUPPORT 
SYSTEMS FOR CANCER  

Due to the vast literature available for cancer, 
the author focused on the use of CDS systems in 
breast and lung cancer, which have the highest 
global incidence and highest global mortality, 
respectively,27 and which represent the huge 
complexity in treatment decisions for cancer.

Cancer Screening  

CDS systems can help primary care practices 
to identify patients at high risk of cancer, who 
may benefit from screening tests. For example, 
in a recent study carried out in the USA, a CDS 
system implemented algorithms derived from the 
2018 National Comprehensive Cancer Network 
(NCCN) guidelines for genetic evaluation of 
hereditary cancer. The system was integrated 
into an EHR and evaluated in a single-centre 
pilot study (N=143,012). It identified 5,245 
(3.7%) patients who met criteria for genetic 
evaluation. Genetic councillors contacted 71 
of those patients, of whom 35% scheduled an 

appointment, resulting in the identification of 
pathogenic variants in cancer predisposition 
genes in two patients.28

Cancer Diagnosis 

The first step in the clinical management of 
cancer is to definitively diagnose the disease. 
Therefore, supporting clinicians to reduce 
delayed diagnosis or misdiagnosis, as well 
as increasing identification of early-stage 
cancer, has the potential to improve outcomes. 
A systematic review of studies using CDS 
systems for cancer diagnosis in primary care 
between 1998–2018 found that three out of nine 
studies showed improvements in diagnostic  
decision-making, three out of nine demonstrated 
positive effects on secondary outcomes,  
and one out of nine reported a reduction in time 
to diagnosis.24

For example, one CDS system that assists 
radiologists in diagnosing lung cancer from 
CT scans showed superior nodule-detection 
sensitivity compared to state-of-the art analysis 
programs.29 Another CDS tool is currently in use 
in Birmingham Children’s Hospital, UK, to support 

Figure 2: A graphical illustration of how clinical decision support systems are intended to support healthcare 
practitioners. 

CDS; clinical decision support.

CDS
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non-invasive diagnosis in children presenting 
with solid body tumours. Early findings suggest 
that the tool makes the interpretation and 
analysis of advanced MRI more comprehensive 
and accessible to clinicians.30 

In Baltimore, Maryland, USA, a CDS algorithm 
categorises lung cancer nodules as malignant 
or non-malignant using Fleischner Society 
recommendations, along with smoking history, 
sex, and nodule location. It can stratify malignancy 
risk beyond the Fleischner categories and 
may help clinicians provide more personalised 
treatment recommendations.31 

Finally, a retrospective study in a primary 
care centre in Saudi Arabia compared clinical 
outcomes for adults in the 3.5 years before 
and after implementation of EHR-integrated  
CDS systems. Findings indicated that CDS 
systems led to significant increases in breast 
cancer diagnosis.32

Cancer Management  

Cancer is a complex disease with many 
therapeutic options.33 Therefore, treatment 
decisions require co-ordinated expertise from 
diverse health professionals. Multidisciplinary 
team (MDT) meetings are routinely held to meet 
this need, but they can be affected by difficulties 
in transferring expertise across centres, and 
in evaluating the quality of decision-making.33 
CDS systems can support the MDT process  
by presenting patient data and suggesting the 
most suitable treatments according to best 
practice guidelines, potentially using previous 
cases as evidence.

Clinical decision support systems can 
improve treatment guideline adherence  

For example, an online tool that customises 
NCCN guidelines for non-small-cell lung cancer 
(NSCLC) to patients’ clinical and pathologic 
features was tested at a tertiary care centre in 
California, USA. Patients seen after the use of the 
tool (N=76) were more likely to receive smoking 
cessation counselling and less likely to receive 
adjuvant therapy than patients seen prior to the 
use of the tool (N=157), suggesting that the CDS 
tool increased guideline-concordant care.34 

Similarly, a CDS system increased adherence to 
NCCN breast cancer guidelines by 0.5% (p=0.003) 

in China (N=1,977 patients). Oncologists 
changed their initial treatment decision in 5% of 
patients, citing consideration of the CDS system 
recommendations, patient factors highlighted by 
the system, and the decision logic provided as 
reasons for the change.35 Another CDS tool that 
combined three breast cancer clinical practice 
guidelines was tested in Spain and France. In 17% 
of cases (24 out of 138), clinicians modified their 
decisions after using the tool, and an external 
expert determined that in most cases (75%), the 
new decisions were more appropriate.36

Using an alternative approach, a CDS system 
was developed in the Netherlands to help 
multidisciplinary tumour boards construct a 
shared mental model of individual lung cancer 
cases. A simulated tumour board using eight 
primary lung cancer cases found that the 
system was helpful for accurate diagnosis and 
classification, helped to cross-validate diagnostic 
findings, and facilitated cancer staging.37

Clinical decision support tools can predict 
complications 

Accurate assessment of complication risks can 
support the decision-making process of an 
MDT. For example, a CDS system incorporating 
machine learning showed the potential to 
improve the prediction of significant weight 
loss following radiotherapy in patients with lung 
cancer (N=37). In four cases, physicians changed 
their original prediction after reviewing the CDS 
system’s output, resulting in an improvement in 
accuracy (from 0.54 to 0.59).38

In a larger study, the utility of a CDS tool to 
make relapse risk predictions for breast cancer 
was assessed in patients for whom adjuvant 
chemotherapy was uncertain. Use of the tool 
resulted in changes to initial chemotherapy 
decisions in 36% of cases (72 out of 200).39

Similarly, an evidence-based neutropenia-
risk algorithm developed to assist oncologist 
decisions regarding cytotoxic chemotherapy 
was tested on a retrospective cohort of patients 
with newly diagnosed cancer in the USA (N=126). 
Mean predicted risk in high-, medium-, and  
low-risk groups were similar to observed event 
rates over the following year.40
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Clinical decision support systems  
can support clinical interpretation of 
genomic mutations 

The interpretation of genomic mutations to 
inform treatment decisions is a formidable task,41 
and several CDS systems have been developed 
to support these decisions. For example, a 
tool that reports a ‘21-gene recurrence score’ 
for patients with early-stage breast cancer 
was assessed across four centres in Spain 
(N=401). Use of this tool reduced the rate 
of chemotherapy prescription from 56% to 
25%, reducing unnecessary chemotherapy.42 
However, since each CDS has a different way 
of classifying variants and identifying potential 
treatments, they can produce disparate results. A 
comparative analysis of three genomic-mutation 
CDS systems was performed on a cohort of 48 
patients in Austria, with breast, colorectal, or lung 
cancer. The frequency of concordant actionable 
recommendations was only 4.3–28.0%, 
depending on the systems being compared, 
suggesting that further development and testing 
of CDS algorithms is needed.41

Clinical decision support tools have the 
potential to predict therapeutic response 

Individual patients can respond quite 
differently to the same treatment, and accurate  
prediction of this response could support MDT 
decision-making. A CDS algorithm based on 
machine learning was developed in South  
Korea to combine clinical characteristics 
related to response to anti-programmed death  
protein 1 therapy in patients with  
NSCLC. Compared to separate predictions 
based on the individual characteristics, the 
CDS algorithm showed a significantly greater 
prediction performance.43

Can clinical decision support systems 
accurately model multidisciplinary team 
treatment decisions? 

Several studies have investigated how well 
recommendations made by CDS systems align  
to actual treatment decisions made by 
MDTs.33,44,45 In Australia, a machine learning  
model was tested on breast cancer cases 
(N=1,065). The model more accurately predicted 
MDT decisions regarding adjuvant cancer 
therapy than a simple application of guidelines 

did, suggesting that it has the potential to  
facilitate the transfer of expert knowledge to 
more remote centres.33

In a similar study, concordance between  
CDS-based treatment recommendations and 
an MDT for patients with breast cancer (N=638) 
was assessed in a single centre in India. Results 
suggested a high level of concordance overall 
(93%), though it was significantly lower in  
older patients.44 

Finally, a study in South Korea investigated 
the alignment of treatment recommendations 
from a CDS system versus an MDT in cases of 
lung cancer (N=405). Results indicated that 
recommendations were highly concordant (92% 
agreement) in general. Concordance was lower 
for patients with Stage II NSCLC and limited 
disease small-cell lung cancer (83% and 85%, 
respectively), suggesting that patient preference 
may be more important in these disease stages.45 

Clinical Decision Support for Image 
Analysis 

CT and MRI represent advanced techniques 
for lesion detection, disease staging, and the 
assessment of therapeutic response.46 Molecular 
classification of cancers, and the potential for 
non-invasive tumour subtyping, are increasingly 
important. That means that advanced image 
processing and the integration of imaging and 
clinical data are increasingly required.22

CDS systems have been developed to assist 
clinicians in diagnosing cancer using CT or 
MRI. For example, a deep-learning system 
designed to support CT-based lung cancer 
diagnosis outperformed a current state-of-the 
art analysis program.29 A team at Birmingham 
Children’s Hospital is evaluating another CDS 
tool that analyses advanced MRI data to support  
non-invasive diagnosis in children presenting with 
solid body tumours. Early findings suggest that 
the tool facilitates discrimination between benign 
and malignant tumours with high sensitivity 
and specificity.30 Additionally, a CDS system has 
been developed to analyse multiparametric MRI 
and clinical data to determine the probability 
that a patient is harbouring clinically significant 
pancreatic cancer. Initial evaluation suggests 
that this system has comparable sensitivity and 
specificity to an experienced radiologist.23
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A machine learning approach is also being  
used to develop a radiomics model for the 
preoperative prediction of microsatellite 
instability status from rectal cancer MRIs. This 
Chinese clinical trial hopes to show that a 
non-invasive model could be applied in CDS 
systems to improve diagnostic, predictive, and  
prognostic accuracy.47

Machine learning techniques are often applied 
to image processing because of the volume and 
complexity of the associated data. However, the 
training of these systems represents a challenge. 
Training requires vast amounts of quality data to 
validate performance.22

To address this issue, the International 
Association for the Study of Lung Cancer 
(IASLC) is developing the Early Lung Imaging 
Confederation (ELIC). ELIC will provide 
access to large numbers of high-quality CT 
images and associated de-identified clinical 
information, using a cloud-based infrastructure. 
The IASLC hopes that this image library will 
help to improve the reliability of CT-based CDS  
systems worldwide.46

Utility of Clinical Decision Support to 
Predict Outcomes in Cancer  

Several systematic reviews have been conducted 
over the past 5 years to assess the impact of 
CDS systems in cancer. Beauchemin et al.12 
reviewed studies of CDS systems used to support 
therapeutic decision-making in cancer, finding 

that 56% (five out of nine) demonstrated a 
significant improvement to process outcomes, 
and 67% (four out of six) demonstrated 
significant improvements in patient outcomes.12 
A similar review conducted by Klarenbeek et 
al.48 analysed 61 publications that evaluated 
the impacts of higher level CDS systems (those 
using automated clinical guidelines, artificial 
intelligence, data mining, or statistical methods). 
In this review, CDS systems were associated with 
significant improvements for process outcomes 
and guideline adherence; however, very few 
of the studies assessed clinical outcomes, and  
none identified significant improvements with 
the use of CDS.48

Unfortunately, the quality and utility of CDS 
systems can be quite variable. Very few 
are backed up by strong validation data to 
demonstrate their performance in actual practice. 
For example, a systematic literature review of 
systems available for incurable metastatic NSCLC 
found that few had been validated with recent, 
external, clinical data, and their calibration and 
discrimination were often poor.49

LIMITATIONS AND NEXT STEPS 

The literature raises several potential facilitators 
and barriers to the implementation of CDS 
systems for cancer, summarised in Table 1.

Implementation strategy is critical to the success 
of a CDS system.24-26 For example, one CDS 

CDS: clinical decision support; MDT: multidisciplinary team.

Table 1: Potential facilitators and barriers to the implementation of clinical decision support systems for cancer.

Facilitators or benefits Barriers

Easy access to well-structured patient data48 Clinicians’ trust in the CDS system24

Reduction of MDT preparation time and/or meeting 
duration48

Negative impact on workflow24,25

Increased efficiency of workflow48 Insufficient adaptability of the system to local and 
contextual needs25

Integration with clinical protocols50 Potential requirement for ongoing technical assistance21

Simple and transparent overall reasoning structure50

A focus on supporting the diagnostic journey; suggesting 
the next step, rather than just knowing the direction of a 
pathway51
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system implemented in an outpatient cancer 
clinic in Norway to support pain management 
failed to reduce pain intensity, or significantly 
change opioid prescriptions. This failure was 
attributed to poor implementation of the system 
in the clinic.52 Part of the difficulty in successful 
implementation is the potential for a CDS  
system to be perceived as a threat to clinical 
judgment by some clinicians, and fear of 
implementing new technology.53 Adequate 
training for the clinicians who will use the CDS 
system is essential to ensure effective use.

To begin to realise the full potential of CDS in 
cancer, several steps need to be taken. First, 
further well-designed trials are needed to 
evaluate CDS in real clinical environments.24,50,53 
There is a paucity of data evaluating clinically 
relevant outcomes in oncology, and rigorous 
evaluation is critical to understand the best 
way to implement CDS systems to improve 
patient outcomes.54 Second, existing guidelines 
need to be converted into algorithms that can 
be interpreted by computers,55 and several 
attempts have already been made to address 
this issue.56,57 Finally, the issue of missing data 
in EHRs needs to be addressed, since many 
machine learning algorithms require complete 
datasets.58 One approach to this problem was 
suggested by Baron et al.,58 who developed a 

metamodel that produces an aggregate output 
from cancer modules for which a patient has 
complete data. The metamodel better predicted 
survival than many of the individual models. Its  
performance was similar to that of imputation 
methods that address missing data, which can be 
subject to bias.58

CONCLUSIONS 

Cancer care delivery could be dramatically 
better than it is. Unwarranted variation results 
in a considerable waste of resources, indicating 
that better care can be delivered more efficiently 
and at lower cost. Effective precision oncology 
requires the consideration of a vast array of 
complex data. By integrating these data into 
CDS systems, we can leverage rapidly increasing 
knowledge to provide the best possible 
healthcare services, timely decision-making, and  
health-related quality of life for patients with 
cancer. To realise the full potential of CDS 
systems, we need to address well-documented 
limitations in current clinical best practice 
guidelines and data representation; conduct 
further well-designed trials to demonstrate the 
utility of CDS systems in cancer care; and improve 
our understanding of the best way to implement 
CDS systems into healthcare systems.
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