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Meeting Summary
The 2022 International Scientific Conference of Probiotics, Prebiotics, 

Gut Microbiota and Health® took place in Bratislava, Slovakia, from 27th–30th 
June. A common theme throughout the conference was that, although significant 
progress has been made, considerable work remains to be done in understanding 
how probiotics work, aligning definitions of microbiome-modifying agents, and 
communicating evidence-based recommendations to clinicians and consumers. 
There was also an overarching concern around the ease with which food 
supplements receive marketing approval compared to drugs, and where probiotics 
lie on this spectrum.

Arthur Ouwehand, International Flavors & Fragrances, Inc. (IFF), Kantvik, Finland, 
presented updates to the 2022 International Life Sciences Institute (ILSI) Concise 
Monograph on probiotics, prebiotics, and the gut microbiota in human health. 
Hania Szajewska, Medical University of Warsaw, Poland, focused on clinical 
recommendations for the use of probiotics, suggesting ways to approach the 
differences between guidelines. Regulatory agencies now recognise probiotics as 
a new category of medicinal products termed ‘live biotherapeutic products’, and 
Sin-Hyeog Im, Pohang University of Sciences and Biotechnology, Pohang, South 
Korea, and ImmunoBiome Inc., Pohang, South Korea, discussed the importance of 
characterising a new probiotic and understanding its mechanism of action to fulfil 
regulatory requirements. Benjamin Jensen, Department of Biomedical Sciences, 
University of Copenhagen, Denmark, stressed the importance of considering the 
gastrointestinal target and the diet and condition of the patient when developing 
probiotics, and Martin Haranta, PerBiotiX – Microbiome Solutions, Kysucké 
Nové Mesto, Slovakia, expanded on this subject, emphasising the promise that 
personalised and targeted modulation of gut microbiota holds for chronic disease. 
Sean Gibbons, Institute for Systems Biology, Seattle, Washington, USA, and 
University of Washington, Seattle, USA, described some of the current and emerging 
tools to support research into microbiota-based therapies and how these could 
be harnessed to achieve personalised medicine. Finally, links between the gut 
microbiome and the liver and central nervous system (CNS), and potential therapies 
to exploit these connections were illustrated by Peter Konturek, Thuringia-Clinic 
Saalfeld, Germany, and Gerard Clarke, University College Cork, Ireland.

Updates to the International Life 
Sciences Institute Europe Concise 
Monograph on Dietary Probiotics, 
Prebiotics and Gut Microbiota in  
Human Health 

Arthur Ouwehand 

Ouwehand emphasised that there is a need 
for reliable and objective information on what 
probiotics and prebiotics are, and what effects 
they can have on human health and disease.1 
One of the aims of the ILSI is to address this 

need by publishing freely available, objective, 
scientifically sound, and concise monographs, 
written in language accessible to the  
interested layperson.2

In 2013, the European branch of ILSI (ILSI 
Europe) published a concise monograph on 
the topic of probiotics, prebiotics and the gut 
microbiota, which resulted from a collaboration 
between the Probiotic and Prebiotic Task Forces 
and external academic experts.3 Due to rapid 
advances in the understanding of these topics 
over the past 8 years, this monograph has been 

Citation: EMJ Gastroenterol. 2022;11[Suppl 6]:04-16. DOI/10.33590/
emjgastroenterol/10075567. https://doi.org/10.33590/
emjgastroenterol/10075567.

Poster and Session Review

https://creativecommons.org/licenses/by/4.0/
https://www.emjreviews.com


6 Gastroenterology  ●  August 2022  ●  Creative Commons Attribution-Non Commercial 4.0

revised and republished this year, with the 
title ‘Dietary probiotics, prebiotics and the gut 
microbiota in human health’.2

Ouwehand presented the new aspects of the 
latest revision of the concise monograph, 
explaining that it now also includes sections 
covering:

• The use of prebiotics to mimic the 
effect of human milk for infant formula: 
Oligosaccharides in breast milk have 
been shown to enhance the growth of 
bifidobacteria in the infant gut, which has 
led to the addition of prebiotics with a 
bifidogenic effect being increasingly added 
to infant formulae. Studies have shown that 
the addition of some prebiotics results in a 
gut microbiome, stool pH, and small-chain 
fatty acid (SCFA) pattern similar to  
breast-fed infants.

• Prebiotics and probiotics in metabolic 
health, weight management, and food 
intake: Prebiotics have been associated with 
a reduction in food intake and decreasing fat 
mass, which can be beneficial in diabetes, 
though data is inconsistent in humans. 
Prebiotics have also been shown to increase 
SCFAs and modify bile acid profiles, as well 
as improving insulin sensitivity and glucose 
homeostasis. Some probiotics may have 
benefits in terms of weight management, 
possibly through their influence on satiety 
and hormones that control hunger.

• Mental health and the gut–brain axis: 
Evidence suggests that intestinal microbes 
and their metabolites affect the brain, 
influencing behaviour. Early studies suggest 
that prebiotics and probiotics may have a 
beneficial effect on stress and anxiety.

• The impact of prebiotics and probiotics on 
chronic inflammatory bowel disease (IBD): 
Research suggests that IBD may result 
from dysregulation of the mucosal immune 
response to the gut microbiota in genetically 
susceptible individuals, and that prebiotics 
and probiotics may have a positive impact 
on IBD risk and management.

The revised ILSI Europe concise monograph 
provides an update on the current 

understanding of the role that the intestinal 
microbiota play in health and disease, the 
proposed health benefits of probiotics and 
prebiotics, and an expanded definition of 
the term ‘prebiotic’ to include human milk 
oligosaccharides.2 

Ouwehand concluded by stressing that 
although there are still gaps in understanding 
how probiotics and prebiotics work, the last 
few years have improved this knowledge 
considerably. He also emphasised that ILSI 
Europe is working on translating the concise 
monograph into other languages.

New Guidelines on the Use of Probiotics 
and Why Guidelines May Differ 

Hania Szajewska 

Szajewska highlighted some of the negative 
criticism directed towards probiotics in both 
scientific journals and the media, and explained 
that conflicting guidelines for the use of 
probiotics in healthcare are part of the problem.4 

Guidelines in probiotics may differ because of 
inclusion/exclusion rules, the targeted population, 
the availability of probiotics, and the outcome 
measures considered.5

Szajewska summarised the latest 
recommendations for the use of probiotics 
from the European Society for Paediatric 
Gastroenterology, Hepatology and Nutrition 
(ESPGHAN), which are currently under review 
for publication. She explained that the ESPGHAN 
working group restricted their recommendations 
to specific strains, or combinations of strains, of 
probiotics. In addition, recommendations were 
only made if at least two randomised controlled 
trials (RCT) were available for a particular strain. 
Szajewska also stressed that ≥80% agreement 
among experts in the ESPGHAN working group 
was required before any recommendation was 
made. Finally, the ESPGHAN guidelines were 
made available for public consultation over 16 
days, and all comments were evaluated. The 
ESPGHAN guidelines are intended to help local 
policy makers to make decisions regarding the 
routine use of probiotics.6 
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Szajewska presented a recent RCT as an 
example to explain why guidelines can 
differ.7 This study assessed the effect of 
an eight-species probiotic on the risk of 
antibiotic-associated diarrhoea in children 
receiving a broad-spectrum antibiotic (n=3137 
[NCT03334604]).8 Children were given either 
the probiotic or placebo for the duration of their 
antibiotic treatment and 7 days afterwards.7 
The findings showed that the probiotic had 
no significant impact on antibiotic-associated 
diarrhoea (caused by Clostridoides difficile or 
of unexplained aetiology).7 However, probiotic 
treatment was associated with a significant 
reduction in relative risk of diarrhoea in general 
(regardless of aetiology) compared with 
placebo (relative risk: 0.65; p=0.02).7 Szajewska 
stressed that this shows the significant impact 
that definitions of diarrhoea have on outcomes 
in clinical trials, which affects guidelines that 
consider different outcome measures. This 
study represents the only RCT to investigate this 
eight-strain probiotic in paediatric antibiotic-
associated diarrhoea. Therefore, it would not 
have been considered by the ESPGHAN working 
group. Other guidelines might take this RCT 
into account and provide recommendations 
based upon it, demonstrating the difference that 
inclusion criteria can make in clinical guidelines.

In terms of how clinicians can evaluate the 
differences between guidelines, Szajewska 
presented several possible approaches: 

• The ESPGHAN 2020 guidelines both 
recommended the use of Lactobacillus 
rhamnosus, Saccharomyces boulardii, and 
Lactobacillus reuteri probiotics for acute 
gastroenteritis. However, the American 
Gastroenterological Association (AGA) 2020 
guidelines do not recommend the use of 
probiotics for this condition.9,10 These are 
clearly opposing recommendations, one 
conditional for and one conditional against. 
Szajewska explained that the interpretation 
of each of these recommendations is actually 
identical, and that different choices will be 
appropriate for different patients.9,10 Also, 
clinicians should help patients to make 
decisions on an individual basis that includes 
patient preference.

• The ESPGHAN and AGA guidelines9,10 both 
recommend probiotics for the prevention of 

necrotising enterocolitis, yet the strains they 
recommend differ. Szajewska suggested 
that if there is any consensus between 
guidelines, such as the recommendation for 
L. rhamnosus in this case, then clinicians  
should use this strain if it is available in 
their country. If not, they should turn to a 
treatment that is recommended by at least 
one current guideline.

• Guidelines may be unable to provide 
recommendations either for or against the 
use of probiotics, prebiotics, or synbiotics 
in a particular population, which means 
that the decision should be made between 
the physician and the patient to include 
their clinical, demographic, and family 
circumstances. For example, the European 
Academy of Allergy and Clinical Immunology 
(EAACI) guidelines for females who are 
pregnant or breastfeeding and infants 
indicates the options available to clinicians to 
help families to consider the pros and cons of 
different formulations.11

Szajewska concluded that there is no ‘one size 
fits all’ recommendation for probiotic use, and 
that probiotics should be considered alongside 
other available interventions to achieve the best 
outcome for each patient.

Probiotics on the Border Between 
Functional Food and Pharmabiotics 

Sin-Hyeog Im 

Dysregulation of the intestinal microbiome 
contributes to the development of immune 
disorders, neuronal disorders, and metabolic 
syndromes.12 Both microbes and their bioactive 
molecules are therefore candidates for 
microbiome-derived therapeutics.12 However, 
probiotics are not universally beneficial, and 
there have been cases where they were 
associated with harmful effects in at-risk 
groups.13 The U.S. Food and Drug Administration 
(FDA) and the European Directorate for the 
Quality of Medicines and healthcare (EDQM) 
now recognise probiotics as a new category of 
medicinal products termed ‘live biotherapeutic 
products’ (LBP).14 Specific guidelines are  
required for the use of LBPs, and regulatory 
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approval of LBPs should require the identification 
of their effector molecules and their mechanism 
of action.14

Im explained that these requirements present 
challenges for the development of microbiome 
therapeutics, partly because of the difficulty in 
translating data from animals to humans due to 
the concept of the holobiont, which is the host 
genome and its associated microbiome.15 For 
example, there is a need to characterise LBPs 
in a similar way to drug candidates, evaluate 
them in a way that considers the immune and 
microbiome status of the patient, define its 
mechanism of action, and establish safety, 
efficacy, and quality control of the LBP.

Im described an innovative and recently 
developed pre-clinical model system designed 
to model the human immune system and 
microbiome.16,17 Avatiome™ (ImmunoBiome, 
Pohang, South Korea) can be used to develop 
novel drug candidates for microbiome-derived 
therapy.16,17 In this system, in vitro analysis 
is followed by ex vivo analysis and then by 
analysis of the microbiome and immune system 
in animal models, including specific pathogen-
free mice, gnotobiotic mice, mono-associated 
with defined bacteria in germ-free mice, and a 
humanised mouse model.17,18 These assessments 
are followed by bioinformatic analysis, artificial 
intelligence analysis, clinical design, clinical 
indicator analysis, and new drug development 
target deduction analysis, to evaluate the human 
applicability of drug candidates.16,17

The Avatiome system has been used to identify 
bacterial strains with therapeutic potential as 
LBPs, IMB001 and IMB002, and their effect on 
cancer, autoimmunity, and autism spectrum 
disorder.16,17 By identifying the effector 
molecules from these bacteria, Im explained 
that it has been possible to define the 
underlying mechanisms of action. For example, 
IMB001 enhances the immunostimulatory 
effects of immune checkpoint inhibitors 
through rhamnose-rich heteropolysaccharides. 
Rhamnose-rich heteropolysaccharides are 
expressed on the bacterial surface and 
have roles in the activation of cytotoxic T 
cells and iron sequestration in the tumour 
microenvironment. IMB002 has anti-
inflammatory properties through cell surface 
β-glucan/galactan polysaccharides, which 

induce the proliferation of regulatory T cells, 
and have been shown to suppress inflammation 
in mouse models of colitis.16,17 Therefore, 
Avatiome™ is currently being used to develop 
microbiome therapeutics based on these LBPs, 
aiming to improve anti-tumour immunity and 
reduce inflammation in IBD, in systemic lupus 
erythematosus, and also in autism spectrum 
disorder.16,17

Ecology and Physiology of the Small 
Intestine Versus Colon: Potential 
Consequences for Probiotic 
Administration? 

Benjamin Jensen 

In addition to directly influencing disease 
trajectory, gut bacteria and their secreted 
molecules can modify drugs and affect host 
cells, including their secretory products, 
such as bile acids.18 However, since much 
of our current understanding of the human 
gut microbiome comes from studying faecal 
samples, we may be missing host-microbe 
interactions that occur in metabolic and 
immunological niches in the small intestine.18

The small intestine and colon are physiologically 
quite different. Most simple nutrients are 
digested by host enzymes and absorbed in the 
small intestine, where the rapid transit time of 
luminal contents, along with high concentrations 
of bile acids and host-defence peptides, creates 
a hostile environment for bacteria. In contrast, 
the more favourable environment of the colon 
allows the microbiota to thrive, producing 
enzymes necessary for the fermentation of 
dietary fibre.19

Jensen emphasised the importance of 
considering the gastrointestinal target when 
developing probiotics. For example, while Crohn’s 
disease can affect both the small intestine and 
the colon, ulcerative colitis is restricted to the 
colon and rectum.20 Recent studies illustrate 
the importance of understanding interactions 
between the microbiome and the gut surface 
when developing probiotics. Firstly, Yu et al.21 
found that colonic Paneth cell metaplasia is 
associated with increased colonic lysozyme 
production in patients with IBD. However, 
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despite the protective anti-bacterial effect 
of lysozyme in the small intestine of healthy 
individuals, in mice with colitis, colonic lysozyme 
processing of mucolytic bacterial species such 
as Ruminococcus gnavus has been shown to 
exacerbate inflammation.21 Verma et al.22 showed 
that isolated cell surface β-glucan/galactan 
polysaccharides of Bifidobacterium bifidum 
induce regulatory T cells in the colon but not 
in the small intestine, indicating that bacterial 
isolates represent a potential alternative to 
live probiotic therapy for rebalancing colonic 
immunity and gut microbiota. Another option is 
to use lysates from non-commensal bacteria. 
Lysates of the non-commensal bacterium, 
Methylococcus capsulatus (Bath), which is found 
in soil, have recently been shown to induce 
regulatory T cells in the colon and small intestine 
of obese mice compared with a control diet.23 
Jensen indicated that this approach may be 
relevant for the future treatment of a diverse 
spectrum of diseases, including food allergy (a 
small intestinal disease), ulcerative colitis (a large 
intestinal disease), and Crohn’s disease.18

It is also important to consider the effect of diet 
when developing microbiome-based therapies, 
and Jensen presented the example of two 
contradictory studies. Kovatcheva-Datchary 
et al.24 reported that an improved glucose 
metabolism following a high-fibre diet was 
associated with an enrichment of Prevotella 
copri in the gut microbiota of healthy subjects. 
Mice fed a high-fibre diet exhibited improved 
glucoregulatory capacity upon treatment with 
P. copri. Conversely, Pedersen et al.25 reported 
that P. copri was associated with increased 
serum levels of branched-chain amino acids 
characteristic of patients with insulin resistance. 
This study found that P. copri could induce 
insulin resistance in mice fed a low-fibre, high-
fat diet, suggesting that diet per se can promote 
a dichotomous bacterial response in relation to 
human health. Another study that illustrates the 
importance of considering diet in conjunction 
with probiotics showed that in mouse models  
of obesity, high-fat diets based on different 
sources of fat, carbohydrates, and proteins 
produced differential responses to probiotics 
administered to induce weight loss (Larsen et al., 
unpublished data).

Finally, Jensen stressed that the individual 
circumstance and physical condition of each 

patient should be taken into consideration 
when developing or administering probiotics. 
For example, a recent clinical study identified 
selective plasma and microbial tissue signatures 
in age-, gender-, and weight-matched patients 
with morbid obesity, with differences between 
patients with and without Type 2 diabetes.26 

These recent findings indicate that bacterial 
translocation may vary and depend on the health 
and disease status of each patient.27

Towards a Personalised and Targeted 
Microbiome Modulation 

Martin Haranta 

The composition of the gut microbiota is 
influenced by many factors, including age, 
health status, diet, genetics, and geographical 
region.26 Haranta stressed that while gut 
dysbiosis is associated with many diseases, the 
diversity, composition, and function of the gut 
microbiome can vary not only between diseases, 
but also among individuals suffering from the 
same disease. It is not yet clear whether gut 
dysbiosis is a cause or consequence of disease, 
but it is apparent that targeted gut microbiota 
modulation can alleviate symptoms, and will 
likely serve as adjuvant therapy for many 
diseases in the future.28,29

Haranta explained that novel approaches 
are needed to develop effective methods to 
modulate the microbiome for the prevention 
and therapy of chronic diseases. One potential 
approach is to personalise probiotic therapy, 
which should reduce the risks of treatment 
resulting in minimal benefit and/or adverse 
effects.28 A key challenge for personalisation is 
the selection of suitable biomarkers to direct the 
composition of a probiotic mixture. Personalised 
gut microbiota modulation is still in the early 
stages of research, and biomarkers that are 
currently used remain quite simple, such as 
the abundance of certain phyla or species in 
gut microbiota. However, Haranta emphasised 
that the metabolic activity of the microbiome 
can differ even while the composition remains 
the same, indicating that further research into 
metabolomics is needed to enable the effective 
personalised modulation of the gut microbiota.
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A recent observational study was conducted 
to assess the application of personalised 
probiotics.30 Stool samples collected from 
volunteers (n=48) were analysed for microbiota 
composition, and this data plus a patient-
reported medical history were used to prepare 
a personalised mixture of probiotics for each 
patient.30 A mixture of lyophilised probiotic 
cultures was prepared in capsules, with each 
single daily capsule containing 35 billion colony-
forming units.30 The basis of the probiotic 
mixture was determined by the number and 
ratio of Lactobacilli and Bifidobacteria in the 
stool sample 30 For example, a low number of 
one type of bacteria resulted in the use of more 
of these bacteria in the probiotic mixture.30 
Other factors used to prepare the personalised 
probiotic mixture included the ratio of Fermicutes 
and Bacteriodetes, which included a history 
of diarrhoea, antibiotic use, constipation, IBD, 
or allergy.30 Also, the BMI of the patients was 
included in the evaluation.31 After 3 months of 
probiotic administration, a second stool sample, 
clinical evaluation, and medical history were 
obtained from each patient.30

The results from this important study identified 
a statistically significant increase from baseline 
to month 3 in the mean number of Lactobacillus 
(0.01% versus 0.13%; p<0.0001) and 
Bifidobacterium (2.87% versus 4.08%; p<0.01) 
genera, and Actinobacteria phylum (4.84% to 
7.18%; p<0.01), and in the total number of species 
in the faecal samples (799–1498; p<0.05). 
Haranta explained that these unanticipated 
increases in diversity illustrated the potential 
of this approach in improving gut microbiome 
health. The probiotic mixture was also shown to 
reduce self-reported diarrhoea to ≤2 defecations 
per day, or increase self-reported constipation to 
≥1 defecation every other day, in more than half 
of patients studied.30

Haranta emphasised that personalised and 
targeted modulation of gut microbiota holds 
considerable promise as a strategy for 
preventing and treating chronic diseases. He 
envisages that this approach may be combined 
with auto-transplantation of ex vivo modulated 
gut microbiota in the future. 

Tools to Leverage the Microbiome 
to Predict Personalised Responses 
to Dietary, Prebiotic, and Probiotic 
Interventions 

Sean Gibbons 

Gibbons explained that the interplay between a 
patients’ genome, microbiome, and environment 
(e.g., diet, exercise, medication) determines their 
phenotypic trajectory in terms of health and 
disease.31 This means that the composition of 
the gut microbiome can result in heterogeneous 
responses to interventions. There are various 
current and emerging tools to enable scientists 
to harness the microbiome for precision health, 
including in silico methods, in vitro methods, and 
in vivo methods.32

In Silico Approaches 
Machine learning and mechanistic modelling 
have been investigated to predict personalised 
responses to interventions, often leveraging 
a deep phenotyping approach that includes 
the gut microbiota of the patient. For example, 
Zeevi et al.33 used a machine learning algorithm 
to predict postprandial glycaemic responses 
to non-standardised, real-life diet by analysis 
of meal composition (n=800). The algorithm 
was then used to design personalised dietary 
interventions which were predicted to be 
‘good’ and ‘bad’ for each patient, depending on 
whether they resulted in low or high postprandial 
glycaemic responses. The ‘good’ dietary 
intervention significantly lowered postprandial 
glycaemic responses in 10 out of 12 participants 
and resulted in alterations to gut microbiota 
composition, compared with the ‘bad’ diets.33

In contrast to machine learning, mechanistic 
modelling does not require training, but an in-
depth knowledge of the microbiome to generate 
novel hypotheses for causal mechanisms.34 
A recent study applied MICOM, a customised 
metabolic model of the human gut microbiome, 
to undertake a metagenomics study of 186 
people, including both healthy subjects and 
patients with diabetes.35 The results showed 
that individual bacterial genera maintained 
conserved niches across all participants, but 
that the production of SCFAs on the same exact 
background diet was more heterogenous.35

Poster and Session Review

https://www.emjreviews.com
https://creativecommons.org/licenses/by/4.0/


Creative Commons Attribution-Non Commercial 4.0  ●  August 2022  ●  Gastroenterology 11

In Vitro Approaches 
Gibbons described two in vitro approaches that 
can be used to assess personalised responses 
to microbiome-based interventions. The two 
approaches include culture-based systems, such 
as ex vivo faecal microbiota batch culture,36 or 
the continuous culture system, Simulator of the 
Human Intestinal Microbial Ecosystem (SHIME).37 
However, although these systems are cost-
effective and can maintain high throughput, 
Gibbons stressed that some organisms could be 
difficult to culture in this way, and these systems 
lack host tissue for the organisms to interact 
with. Therefore, to overcome this limitation, 
alternative models, such as the ‘gut-on-a-chip’ 
system, have been developed, whereby host 
cells and microbiota can be cultured together.38 

In Vivo Approaches 
Non-human in vivo approaches are usually closer 
to human models than in vitro systems, and 
permit experimental control over genetics and 
environmental exposures.31 Also, the availability 
of germ-free animals allows for causality 
testing.31 However, these systems are not 
biologically identical to humans,39 which limits the 
translational relevance of experimental findings. 
There are also ethical concerns inherent in using 
non-human animals in research.

Human in vivo studies are the approach most 
likely to produce findings that translate to the 
clinic. However, this approach lacks genetic and 
environmental control over the subjects, difficulty 
in obtaining some types of sample, and high cost. 
Gibbons posited that the crossover trial was one 
of the best methods to assess and personalised 
responses to dietary, prebiotic, and probiotic 
interventions.

Leveraging the Gut Microbiota to 
Predict Personalised Responses in the 
Clinic 
The ultimate goal of high throughput design of 
personalised interventions to improve health and 
nutrition, represented in Figure 1, will be difficult 
to achieve. Gibbons explained that artificial 
intelligence platforms are needed to accomplish 
this goal.41

One potential approach is to use a metabolic 
model such as MICOM35 to predict personalised 
engraftment probabilities for probiotics or 
pathogens and personalised microbial metabolite 
production profiles (e.g., Figure 1) in the context 
of a given microbiome composition and diet.

Many of the tools needed to achieve precision 
nutrition and healthcare have already been 
developed. Gibbons explained that the next step 

Reproduced from Wilmanski et al.40

Figure 1: Personalised interventions for optimising gut microbiome health.
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is to integrate these systems, optimise and refine 
precision models that target specific nutritional/
clinical applications (e.g., glucose responses or 
SCFA production), and encourage their adoption 
by healthcare systems and healthcare workers.

The Gut-Liver Axis:  
From Bench to Bedside 

Peter Konturek 

Following exposure to gut-derived bacteria 
via the portal circulation, the liver activates 
innate and adaptive immune responses that can 
lead to hepatic injury.42,43 Several studies have 
demonstrated significant alterations in the gut 
microbiome and permeability of the intestinal 
barrier in chronic liver diseases, and microbiota-
based strategies to manage these conditions can 
include diet, antibiotics, prebiotics, probiotics, 
and faecal microbiota transplantation (FMT).42,44

Konturek explained that pathogen-associated 
molecular patterns in bacteria and bacterial 
metabolites influence liver function in many 
different ways, including effects on inflammation, 
apoptosis, cytoprotection, regeneration, and bile 
acid composition.44

In non-alcoholic fatty liver disease (NAFLD), 
gut dysbiosis has been associated with 
disease progression.45 The key mechanisms 
involved in the impact of gut dysbiosis and the 
progression to non-alcoholic steatohepatitis 
are disruption of intestinal SCFAs, bile acids, 
and choline metabolic homeostasis, increase 
in lipopolysaccharides and endogenous 
alcohol, and activation of nucleotide-binding 
domain, leucine-rich-repeat containing family, 
pyrin domain-containing 3 and 6.46 Similarly, 
disruption of the gut-liver axis has been shown 
to contribute to the pathogenesis of metabolic 
dysfunction-associated fatty liver disease, 
including dysbiosis of the gut microbiota 
and bacterial overgrowth, thinning of the gut 
mucus layer, increased permeability of the gut 
epithelial barrier and vascular barrier, resulting 
in increased inflammation in the liver.47 Gut 
dysbiosis has also been linked to alcohol-related 
liver disease,48 primary sclerosing cholangitis,49 
primary biliary cholangitis,50 autoimmune 
hepatitis,41 and liver cirrhosis.51

Probiotics, Prebiotics, or Synbiotics in 
Chronic Liver Disease 
Manipulation of the gut microbiome by probiotics, 
prebiotics, or synbiotics has been shown to 
improve chronic liver disease.46 For example, a 
meta-analysis of four randomised trials involving 
NAFLD or non-alcoholic steatohepatitis patients 
found that probiotic therapy significantly 
decreased alanine transaminase, aspartate 
transaminase, total cholesterol, high-density 
lipoprotein, TNF-α, and insulin resistance (all 
p<0.05).52 Similarly, probiotics have been shown 
to significantly reduce the risk of hospitalisation 
for hepatic encephalopathy in patients 
with cirrhosis.53 Prebiotics such as fructo-
oligosaccharides, galacto-oligosaccharides, 
and inulin have also been shown to benefit 
patients with liver disease, including significant 
decreases in alanine transaminase and aspartate 
transaminase. An RCT in NAFLD reported a 
significantly increased mean reduction in hepatic 
steatosis and fibrosis, and in serum inflammatory 
mediators, in patients receiving synbiotics 
compared with those receiving placebo.54

Faecal Microbiota Transplantation in 
Chronic Liver Disease 
In a small RCT, 15 patients with NAFLD received 
an allogenic FMT from a healthy donor and six 
received an autologous FMT. Although there 
were no significant differences between groups 
in terms of insulin resistance or hepatic proton 
density fat fraction 6 weeks after FMT, patients 
with increased small intestinal permeability at 
baseline significantly reduced after allogenic 
compared with autologous FMT.55 In patients with 
severe alcoholic hepatitis presenting as acute-
on-chronic liver failure (n=33), a single FMT 
from a healthy family member was associated 
with improved survival and improvements 
in clinical severity scores compared with 
standard of care.56 Finally, FMT compared with 
standard of care has been shown to increase 
microbiome diversity and improve cognition in 
patients with cirrhosis with recurrent hepatic 
encephalopathy.57

Konturek concluded that despite considerable 
research, the complex interactions between 
microbes and chronic liver diseases are not fully 
understood. Further studies are needed to develop 
novel therapies to treat these conditions.42
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The Microbiota-Gut-Brain Axis: 
Therapeutic Targets  

Gerard Clarke 

Signalling pathways between the gut and brain are 
regulated at immunological, hormonal, and neural 
levels.58 These pathways are vital for homeostasis, 
maturation of the immune system, and CNS 
signalling (Figure 2).58

Clarke explained that by manipulating the signalling 
pathways of the gut-brain axis, gut microbiota 
could modify brain function and behaviour, and 
research over the past 20 years has uncovered 
many of these host-microbe interactions.59

Research using animal models has revealed 
various ways microbiota affect the brain. For 
example, germ-free mice have an exaggerated 
stress response,60 and probiotics have been 
shown to reduce stress-induced corticosterone 

levels.61 Studies of brain structure in germ-
free versus conventional mice suggests that 
microbiota are necessary for the normal 
development of the gross morphology and 
ultrastructure of the hippocampus and 
amygdala.62 Gut microbiota also play a role 
in serotonin metabolism, as male germ-free 
mice had higher concentrations of serotonin 
in the hippocampus, and higher serum 
concentrations of the serotonin precursor, 
tryptophan, compared with conventional mice.60 
Interestingly, gut bacteria have been shown to 
secrete tryptamine, a serotonin-like molecule 
also formed from tryptophan, which acts through 
the 5-hydroxytryptamine-4 receptor in the 
colon to increase intestinal secretion.63 Finally, 
gut bacteria are known to produce SCFAs, and 
these metabolites have been shown to modulate 
microglia maturation in mice.64

Clinical research studies have shown reduced 
gut microbiome diversity and a link with 

Reproduced from Grenham et al.58

ACTH: adrenocorticotropic hormone; CRH: corticotrophin-releasing hormone.

Figure 2: Proposed  mechanisms of action through which microbiota can modulate signalling along the 
gut-brain axis. 
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