Lower-Risk Myelodysplastic Syndromes: Putting Anemia Under the Spotlight

The publication of this infographic was funded by Bristol Myers Squibb. Oncol AMJ. 2024;1[1]:44-45. https://doi.org/10.33590/oncolamj/WKMQ3310.

Diagnostic workup for MDS^{9,10}

Job code: HE-US-2400517

Exclude: GI bleeding,

and nutritional causes

Diagnostic workflow

SCAN to visit spotlightonanemia.com

Epidemiology of MDS

MDS occurs predominantly in the aging population

Unmet needs in MDS

Symptoms of MDS

Typical presenting symptoms of MDS are generally non-specific and usually differ, depending on the type of cytopenia^{4,5}

Most common symptoms of MDS

Other symptoms

of MDS

Bone marrow aspiration and biopsy

Somatic mutation analysis (gene sequencing) Cytogenetics (karyotyping, FISH) Immunophenatyping (flow cytometry)

Thrombocytopenia

Exclude: ITP, hypersplenism

Specialist referral and additional

or malignant causes

MDS Diagnosis Algorithm

Diagnosis requires a combination of clinical suspicion, laboratory tests, hematologic and morphologic analysis, and cytogenetic and molecular evaluation 9,11,12

> Minimal prerequisites to establish MDS diagnosis:4,11

Exclusion of other potential disorders

The diagnosis of MDS also requires ≥1 of the following:4

- 1. ≥10% morphologic dysplasia (with or without an increase in blast cells) in ≥1 of the 3 lineages of hematopoietic cells
 - 2. A blast cell count of 5-19%
- 3. A specific MDS-associated karyotype, such as **del(5q)**, del(20q), +8, or -7/del(7q)

Burden on Quality of Life Physical Problems

Physical problems

Emotional problems

Social functioning

Classification^{9,13-15}

Bone marrow blasts	WHO5	ICC
No dysplasia	CCUS	Clinical suspicion of cytopenia
<5%	MDS, hypoplastic MDS with LB MDS with LB and isolated 5q del MOS with LB and SF381 mutation*	Not included MDS-NOS with SLD, or with MLD MDS with del(5q) MDS with mutated SF387
5-9%	MDS with IB1 MDS with fibrosis	MDS with EB Not included
10-19%	MDS with IB2 MDS with biallelic <i>TP53</i> inactivation	MDS/AML MDS with mutated <i>TP53</i> MDS/AML with mutated <i>TP53</i>

Two updated classifications for MDS were developed in 2022: the WH05 and the ICC for Myeloid Neoplasms and Acute Leukaemia, which are overall similar, but with some differences in diagnostic criteria and nomenclatures. 9,

Risk stratification

The IPSS-R is the most commonly used risk stratification system in MDS, bone marrow, and presence of cytogenetic abnormalities. 5,16,1

Revised International Prognostic Scoring System (IPSS-R)¹⁶

19%	38%	20%	
Very Low	Low	Intermediate	

Recently, the IPSS-M was developed, which integrated information from 31 gene mutations in addition to the IPSS-R components. 5,17,

Molecular International Prognostic Scoring System (IPSS-M)¹⁸

14%	33%	11%	11%
		Moderate-Low	Moderate-High

14%

17% Very High

10%

Treatment goals for anemia in LR-MDS⁵

Achieve RBC transfusion independence

hematological status

Improve QoL

Improve OS and delay **AML** transformation

- Hasseriian RP et al. Diagnosis and classification of myelodysplastic syndromes. Blood. 2023;142(26):2247-57

- ©2024 Bristol-Myers Squibb Company

der Bristol Myers Squibb°

Hasserjian RP et al. Diagnosis and classification of myelodysplastic syndromes. Blood. 2023;142(26):2247-57.

Foran JM, Sharmon JM. Clinical presentation, diagnosis, and prognosis of myelodysplastic syndromes. Am J Med. 2012;125(Suppl 7):56-13.

Weinberg OK, Hasserjian RP. The current approach to the diagnosis of myelodysplastic syndromes. Semin Hematol. 2019;56(1):15-21.

Barone P, Patel S. Myelodysplastic syndrome: Approach to diagnosis in the rear of personalized medicine. Semin Diagn Pathol. 2023;40(3):172-81.

Xu ML, Hasserjian RP. Updates in Classification of Myelodysplastic Syndrome. Cancer J. 2023;29:122-9.

Aber DA et al., International Consensus Classification of myelodysplastic Syndrome. Cancer J. 2023;29:122-9.

Aber DA et al., International Consensus Classification of myelodysplastic Syndromes. Since 2012;29:122-9.

Khoury JD et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703-19.

Greenberg Pl. et al. Revised international prognostic sooring system for myelodysplastic syndromes. Blood. 2012;12:2454-65.

Voipe VO et al., SOHO state of the art updates and next questions: treatment of lowe risk myelodysplastic syndromes. Clin Lymphoma Myeloma Leuk. 2023;23:168-77.

Bernard E et al. Molecular International Prognostic Sooring System for myelodysplastic syndromes. NEMB Evid. 2022;1(7):EVD062200008.

Germing U et al. Treatment of anemia in transfastion-dependent and non-transfasion-dependent lower-risk MDS current and emerging strategies. Hemasphere. 2019;3(6):e314.

IPSS-M: Molecular International Prognostic Scoring System; IPSS-R: Revised International Prognostic Scoring System; ITP: idiopathic thrombocytopenic purpura; LB: low blasts; LR: lower-risk: MDS: myelodysplastic syndromes: MLD: multilineage dysplasia: NOS: not otherwise specified: OS: overall survival: OoL: quality of life: RBC: red blood cell; SLD: single-lineage dysplasia; WHO: World Health Organization.

Abbreviations: AMI: acute myeloid leukemia: CCLIS: clonal cytopenia of undetermined

significance: del: deletion: EB: excess blasts: FISH: fluorescence in situ hybridisation: GI: gastrointestinal: IB: increased blasts: ICC: International Consensus Classification:

Frances

Leukemia & Lymphoma Society. Facts 2022-2023. Updated data on blood cancers. 2023. Available at: https://www.lls.org/booklet/facts-updated-data-blood-cancers. Last accessed: 2 May 2024. Zeidan AM et al. Epidemiology of myelodysplastic syndromes: why characterizing the beast is a prerequisite to tarning it. Blood Rev. 2019;34:1-15.

Braga Lemos M et al. Association between red blood cell transfusion dependence and burden in patients with myelodysplastic syndromes: a systematic literature review and meta-analysis. Eur J Haematol. 2021;107(1):3-23.

National Comprehensive Cancer Network (NCCN). Myelodysplastic syndromes: NCCN guidelines version 2.2024. 2024. Available at: https://www.nccn.org/guidelines/guidelines-detail/category-fielid-1446. Last accessed: 2 May 2024.

Sekeres MA et al. Perceptions of disease state, treatment outcomes, and prognosis among patients with myelodysplastic syndromes: results from an internet-based survey. Oncologist. 2011;16(6):904-11.

Stauder R et al. Health-related quality of life in lower-risk MDS patients compared with age- and sex-matchsed reference populations: a European LeukemiaNet study. Leukemia. 2018;32(6):1380-92.

Ria R et al. Nataging myelodysplastic symptoms in elderly patients. Clin Interv Aging. 2009;4:413-23.

Soper J et al. Patient and caregiver insights into the disease burden of myelodysplastic syndrome. Patient Relat Outcome Meas. 2022;13:31-8.

History and physical exam

toxic exposures

Peripheral blood count and peripheral blood smear

Screening tests to rule out

Exclude: hypersplenism, medication.