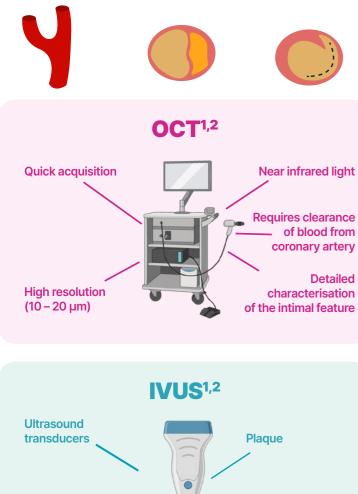
Role of Intravascular Imaging in Optimising PCI Outcomes

EMJ Int Cardiol. 2025;13[1]:72-73. https://doi.org/10.33590/emjintcardiol/VCRM1120

Types of Intravascular Imaging: IVUS and OCT


size, and stent optimisation.1

Improving PCI Outcomes

Summary of Characteristics^{1,2}

		ОСТ	IVUS
t e nyy d n e e 2 r r s	Plaque Characterisation	High-resolution imaging of fibrous, calcific, and lipid-rich plaques	Effective for calcified/fibrotic plaques; measures plaque burden; deeper penetration aids ambiguous caps
	Stent Optimisation	Improves stent positioning; detects malapposition and edge dissection	Assesses stent expansion/apposition; measures vessel size and lesion length for optimised deployment
	Thrombus Visualisation	Excellent for intracoronary thrombus, especially in acute coronary syndromes	Limited thrombus visualisation
	Technical Advantages	Superior surface detail resolution and faster acquisition	Greater tissue penetration for deeper vessel assessment
	Special Applications	Less useful for ambiguous caps or subintimal navigation	Guides antegrade/retrograde wire positions; useful in reverse CAR-T and subintimal navigation

Techniques like OCT and IVUS are revolutionising PCI guidance.¹ OCT and IVUS provide more detail on plaque composition, vessel

Plaque Plaque Deep tissue penetration (1–2 mm) for better visualisation or larger plaques and the vessel wall

OCCUPI Trial³

OCT-guided PCI resulted in a

lower incidence of MACE at

1 year compared with

angiography guidance

Real World Data

1,604 patients underwent

PCI with drug-eluting stents

for complex lesions

ILUMIEN IV Randomized Controlled Trial⁴ OCT resulted in a larger minimum

1,233 underwent 1,254 underwent OCT-guided PCI angiographyguided PCI OCT resulted in a larger minimum stent area, but did not significantly reduce target vessel failure at 2 years.

ADAPT-DES Study⁵

In **8,582 patients**, IVUS lowered rates of stent thrombosis (0.7% vs. 1.0%), MACE (8.4% vs. 11.2%) and myocardial infarction (2.9% vs. 4.6%).

Other studies with real world data include the **ULTIMATE** trial, the **IVUS-XPL**, trial, and the **RENOVATE COMPLEX PCI** trial.

Cost Effective?

High Costs

IVUS generally more accessible and cost-effective than OCT.²

Operator Expertise Needed for IVUS, especially in

subintimal approaches.¹

Al Algorithms May mitgate the need for operator expertise and enhance diagnostic accuracy.¹

Blood Clearance

Needed for OCT; can cause procedural complications.¹

Benefit in High-risk Groups

Very cost effective in Type 2 diabetes, chronic kidney disease, distal left main coronary artery lesions, and acute coronary syndromes.^{6,7} These patients are prone to procedural complications like stent thrombosis or restenosis, so stent placement optimisation with OCT/IVUS reduces procedural complications through superior vessel assessment.^{6,7}

In patients with complex coronary lesions, intravascular imaging guidance reduced the risk of TVF. The greatest benefits were observed in Stage 3 CKD.⁸ Compared to angiography alone, IVUS-guided PCI has an incremental costeffectiveness ratio of 3,649 GBP to 5,706 GBP per quality-adjusted life year gained.⁹

IVUS may be preferred in chronic kidney disease as OCT requires additional contrast to clear the blood pool.^{1,2}

Abbreviations

CKD: chronic kidney disease; IVUS: intravascular ultrasound; MACE: major adverse cardiac events; OCT: optical coherence tomography; PCI: percutaneous coronary intervention; vs: versus.

References

- Panuccio G et al. J Cardiovasc Dev Dis. 2024;11(9):295.
- Apostolos A et al. J Clin Med. 2024;13(23):7087.
- Hong SJ et al. Lancet. 2024;404(10457):1029-39.
- Ali ZA et al. N Engl J Med 2023;389:1466-1476.
- Maehara A et al. Circ Cardiovasc Interv. 2018;11(11):e006243.
- Alberti A et al. Eur J Health Econ. 2016;17(2):185-93.
- Sarwar M et al. J Geriatr Cardiol. 2024;21(1):104-29.
- Kwon W et al. JAMA Netw Open. 2023;6(11):e2345554.
- Sharp ASP et al. Eur Heart J Qual Care Clin Outcomes. 2024;10(8):677-88.