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BACKGROUND

Resting-state	EEG	(RS-EEG)	has	emerged	as	
a non-invasive, low-cost tool for Alzheimer’s 
disease	(AD)	diagnosis	and	stratification.	
This study evaluated whether EEG-based 
biomarkers can predict amyloid status and 
clinical progression from mild cognitive 
impairment	(MCI)	to	AD	dementia	in	patients	
referred to a third-level memory clinic.1 

METHODS

The	authors	retrospectively	analysed	295	
patients who were cognitively impaired 
and underwent a standardised diagnostic 
work-up, including neuropsychological 
assessment,	cerebrospinal	fluid	(CSF)	
biomarker	analysis,	and	19-channel	RS- 
EEG	recording	(10–20	system,	eyes	closed;	
Table 1).	Patients	were	classified	as	amyloid-
positive	(A+;	n=184)	or	amyloid-negative	
(A-;	n=111)	based	on	CSF	Aβ42/40	ratio.	The	
MCI	subgroup	(n=106)	was	divided	into	MCI	
A+	(n=61)	and	MCI	A-	(n=45).	A	total	of	39	
individuals	with	MCI	A+	were	followed	over	 
2 years, and 23 converted to AD dementia.

EEG preprocessing included bandpass 
filtering	(1–45	Hz),	independent	component	
analysis-based artefact removal, and re-
referencing to the average. Source-space 
analysis was performed using standardised 
low-resolution brain electromagnetic 
tomography, constrained to two networks 
of interest: the default mode network 
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(DMN),	typically	affected	in	AD,	and	the	
salience	network	(SN),	more	often	impaired	
in non-AD conditions. These networks were 
defined through a seed-based resting-
state functional MRI analysis conducted in 
an independent cohort of healthy young 
adults, using canonical seeds placed in the 
posterior	cingulate	cortex	(DMN)	and	anterior	
cingulate	(SN).	The	resulting	network	maps	
were coregistered in Montreal Neurological 
Institute	(MNI)	space	and	parcellated	into	
regions of interest. EEG source activity was 
then estimated voxel-wise and averaged 
across each region of interest to extract 
measures	of	current	source	density	(CSD)	
and	pairwise	linear	lagged	connectivity	(LLC),	
across	δ	(1–3.5	Hz),	θ	(4–7.5	Hz),	α1	(8–10	
Hz),	α2	(10.5–12	Hz),	and	β	(12–30	Hz)	bands.

RESULTS

Patients	who	were	A+	showed	a	general	
slowing of EEG cortical activity when 
compared	to	A-	in	both	DMN	and	SN.	
Patients	with	MCI	A+	showed	significantly	
increased	θ	CSD	and	LLC	in	both	networks,	
with peak differences in posterior DMN 
regions, consistent with early network-
level	hyperconnectivity.	Among	subjects	
with	MCI	A+,	converters	exhibited	reduced	
α1	CSD	in	the	DMN	and	decreased	α	LLC	
across both DMN and SN. No significant 
changes	emerged	in	the	β	band.	

Support vector machine classifiers using 
significant EEG features were trained to 
predict amyloid status (at both whole group 
and	MCI	group	levels)	and	MCI	conversion.	

Demographic features CSF biomarkers Clinical features 

N Age (y) Sex (F|M,  
% females) Education (y) Disease

duration (y)
Tau/Aβ42 

ratio
pTau/Aβ42 

ratio CDR MMSE

A+  184	
70.95±7.58	
(50.28–
84.54)

102|82 
(55.43%)

10.58±4.35	
(2.00–18.00)

2.95±2.36	
(0.10–15.00)

1.35±0.89	
(0.11–5.82)

0.22±0.16	
(0.005–1.00)

0.96±0.74	
(0.00–5.50)

22.11±	4.99	
(4.00–30.00)

A–  111 
71.32±7.95
(43.08–
84.90)

62|49
(55.86%)

9.89±4.29
(3.00–20.00)

3.14±2.29
(0.03–1.92)

0.49±0.36
(0.03–1.92)

0.08±0.05
(0.001–0.25)

0.84±0.62	
(0.00–3.00)

23.71±7.03
(5.00–30.00)

p - 0.695 0.944 0.188 0.506 <0.001 <0.001 0.135 0.046

MCI_A+  61	
71.04±	8.71	
(50.29–
84.54)

29|32
(47.54%)

10.25±4.36
(3.00–18.00)

2.90±2.31
(1.00–15.00)

1.21±0.84
(0.03–5.82)

0.20±0.16
(0.001–1.00)

0.76±0.70
(0.00–5.50)

25.74±5.24
(16.00–30.00)

MCI_A-  45	 70.59±8.74	
(54.18–82.66)

27|18
(60.00%)

9.78±4.37
(5.00–17.00)

2.97±2.31
(0.25–9.00)

0.48±0.86
(0.08-1.30)

0.08±0.15
(0.001–0.20)

0.61±0.70
(0.00–2.00)

25.67±5.26
(16.00–30.00)

p - 0.795 0.207 0.594 1.000 0.001 0.001 0.294 1.000

MCI_c 23 
71.81±24.01	
(52.23–
84.90)

10|13
(43.48%)

9.61±5.13
(5.00–17.00)

3.37	±	2.31
(0.50–10.00)

1.28±0.82
(0.28–4.40)

0.21±0.26
(0.04–0.54)

0.96±0.68
(0.00–4.00)

24.13±8.68
(16.00–30.00)

MCI_nc 16	
70.34±24.02
(55.04–
80.90)

8|8	(50%) 10.16±5.16
(3.00–17.00)

2.16±2.31
(0.10–5.00)

1.02±0.82
(0.13–3.07)

0.17±0.26
(0.04–0.58)

0.73±0.68
(0.00–3.50)

26.69±8.69
(22.00–
28.00)

p  - 0.858 0.697 0.771 0.170 0.378 0.711 0.428 0.407

Values	are	averages	and	SDs	(range).	p	values	refer	to	T	test	models	or	the	Chi-square	test.	Statistical	significance	
was	defined	as	p<0.05.

A+:	amyloid-positive;	A-:	amyloid-negative;	CDR:	Clinical	Dementia	Rating	scale;	CSF:	cerebrospinal	fluid;	 
F:	females;	M:	males;	MCI:	mild	cognitive	impairment;	MCI_A+:	amyloid-positive	mild	cognitive	impairment;	MCI_A-:	
amyloid-negative	mild	cognitive	impairment;	MCI_c:	mild	cognitive	impairment	converters;	MCI_nc:	mild	cognitive	
impairment	non-converters;	MMSE:	Mini-Mental	Status	Exam;	N:	number;	pTau:	phosphorylated	Tau;	y:	years.	

Table 1: Demographic and clinical features of patients stratified according to their amyloid status and conversion 
status from mild cognitive impairment to dementia.
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Feature selection was guided by Shapley 
Additive	Explanations,	identifying	occipital	θ	
CSD	and	frontal	α1	LLC	as	most	predictive.	
The best-performing support vector machine 
models	achieved	around	60%	balanced	
accuracy in all classifications, with robust 
results	across	5-fold	cross-validation.	

CONCLUSION

This study underscores that AD causes 
early disruptions in cortical electrical 
activity, detectable through resting-
state	EEG.	θ	current	source	density	and	
network connectivity emerged as early 
markers of amyloid-related pathology, 
while	α	connectivity	remained	relatively	
preserved in early stages and declined in 
patients progressing to dementia. These 
findings	reflect	a	trajectory	from	early	
excitatory	θ	alterations	to	α	disconnection,	
marking synaptic dysfunction and 
neurodegeneration.2-4 Machine learning 
models offer promising avenues for early 
detection and risk stratification.5 Notably, 
the DMN was more consistently impaired 
than the salience network, highlighting  

its selective vulnerability in AD.2,3 

RS-EEG	may	support	scalable,	non-
invasive screening strategies in memory 
clinics, especially where access to amyloid 
PET or CSF biomarkers is limited. Future 
directions include longitudinal validation, 
integration with plasma biomarkers, and 
multimodal frameworks for non-invasive 
prediction of disease progression.
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