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| have selected this review as my Editor’s Pick for this issue of EMJ Respiratory because

there is a growing interest in the integration of Al into healthcare, with machine learning

playing a pivotal role in reshaping the landscape of disease management. Interstitial lung
diseases represent a heterogeneous group for which an accurate diagnosis requires a

multidisciplinary approach, combining clinical, radiological, and pathological
assessments. This article aims to explore and discuss the transformative
potential of machine learning in the management of interstitial lung disease.
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The integration of Al into healthcare has marked a transformative era, with machine learning
(ML) playing a pivotal role in reshaping the landscape of interstitial lung disease (ILD)
management. ML models excel in analysing complex datasets, such as medical imaging and
electronic health records, offering unprecedented advancements in the diagnosis, prognosis,
and treatment of ILDs. These models have demonstrated superior accuracy compared to
traditional methods, particularly in diagnosing idiopathic pulmonary fibrosis, where delays
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Key

1. Interstitial lung diseases (ILD) cause significant morbidity, yet diagnosis is often delayed. Al offers potential to
improve early detection, prognostication, and treatment selection, addressing major unmet needs in ILD care.

in diagnosis significantly impact patient outcomes. Early and precise diagnosis through
ML-driven tools allows for the timely initiation of therapy, which is crucial for improving
prognosis and extending patients' quality of life. Despite the challenges in data quality and
model interpretability, the future of ML in pulmonary healthcare is promising, with continued
advancements poised to enhance patient management and outcomes. This article aims to
examine the transformative potential of ML in the management of ILD.

Points

2. This narrative review synthesised 26 primary peer-reviewed studies applying machine learning to ILD, covering

diagnostic imaging, biomarker discovery, and prognostic modelling, with comparisons to human readers and
evaluation of emerging Al tools.

3. Machine learning can match or surpass expert performance in ILD diagnosis, predict progression, and identify
novel biomarkers, but widespread clinical adoption requires prospective validation, interpretability, and integration

into real-world workflows.

110

INTRODUCTION

In recent years, the convergence of Al and
healthcare has ushered in a transformative
era marked by unprecedented
advancements.! At the heart of this
revolution lies machine learning (ML), a
subset of Al that empowers systems to
learn from data, identify patterns, and
make decisions with minimal human
intervention.! ML, broadly defined, involves
algorithms that enable computers to

learn from and analyse large volumes

of data.! These algorithms improve their
performance through iterative processes,
making predictions or decisions based on
historical data.' In healthcare, ML models
offer the potential to enhance diagnostic
accuracy, prognostic insights, and
treatment planning.

Traditional diagnostic methods often

rely on subjective interpretation of
symptoms and diagnostic tests, which
can be influenced by human error and
variability. ML algorithms, however, can
analyse complex datasets, including
medical imaging, genetic information, and
electronic health records (EHR), to identify
subtle patterns that may elude human
practitioners. This capability can lead

to earlier and more accurate diagnoses,
ultimately improving patient outcomes.

Respiratory « November 2025 « Copyright © 2025 EMJ

Additionally, ML enables personalised
prognostic modelling by integrating diverse
data such as patient demographics,
lifestyle factors, and clinical history. This
allows for individualised risk assessments
and predictions about disease progression
and treatment response, helping to
optimise clinical decision-making and
potentially prevent adverse outcomes.?

Interstitial lung diseases (ILD) represent

a heterogeneous group of approximately
200 pulmonary disorders, characterised
by varying degrees of inflammation and
fibrosis affecting the lung interstitium.?
Accurate diagnosis often requires a
multidisciplinary approach, combining
clinical, radiological, and pathological
assessments, given overlapping imaging
patterns and heterogeneous presentations.*
The traditional diagnostic process for ILD
is often lengthy and invasive. Patients

may undergo multiple evaluations, and in
complex cases, a surgical lung biopsy is
sometimes required to establish a definitive
diagnosis. Even with multidisciplinary
discussions, misdiagnoses or significant
diagnostic delays are common. Notably,
emerging Al systems may facilitate the
detection of pulmonary fibrosis even
before overt clinical or radiological
manifestations appear. For instance, a new
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Al-driven screening tool was able to predict
pulmonary fibrosis up to 4 years before

a conventional diagnosis (area under the
receiver operating characteristic curve
[AUROC]: ~0.84 at 4 years),® underscoring
the potential of ML in identifying ILD at a
pre-fibrotic stage, when early intervention
could be most beneficial.

Idiopathic pulmonary fibrosis (IPF) is

often diagnosed late, with a median delay

of 2.1 years, largely due to misdiagnosis and
delays at multiple healthcare levels, including
general practitioners and community
hospitals.® This delay is particularly
concerning, given that early initiation of
therapy in IPF is associated with better
outcomes and slower disease progression.”

In summary, ML holds transformative
potential in the realm of ILDs, offering
advancements in diagnosis, prognosis, and
treatment.® As the technology continues

to evolve, it is poised to enhance patient
management and outcomes, marking a
significant leap forward in the quest for
more effective and personalised healthcare.
As highlighted by Barnes et al.,® ML
represents a ‘new frontier’ in radiology for
ILD, offering a shift from subjective pattern
recognition toward reproducible, high-
throughput analysis.®

METHODOLOGY

Literature Search Strategy

To explore the impact of ML techniques in
ILD, a comprehensive search of relevant
literature was conducted. The authors
searched the following databases from
1999-20 June 2025:

e PubMed;

o |EEE Xplore;

+ Google Scholar; and
e Cochrane Library.

Boolean operators were used to combine
relevant terms, such as:

« ‘interstitial lung disease’ or ‘idiopathic
pulmonary fibrosis’ or ILD or IPF; and
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« ‘artificial intelligence’ or ‘machine learning’
or ‘deep learning’ or ‘neural networks’
or ‘radiomics’ or ‘computer-assisted
diagnosis.

Filters were applied to restrict results to
English-language, peer-reviewed, human-
subject studies. Titles and abstracts were
screened for relevance, followed by full-
text review. Reference lists of key studies
were also manually screened for additional
sources. A Preferred Reporting Items for
Systematic Reviews and Meta-Analyses
(PRISMA)-style flowchart (Figure 1)
illustrates the selection process.

Studies included in this review met the
following criteria:

* Involved human subjects diagnosed with
any subtype of ILD;

» Applied Al or ML techniques for diagnostic,
prognostic, or biomarkerdiscovery
purposes; and

» Reported specific outcomes, such as
model performance metrics (e.g., AUROC,
sensitivity, specificity), diagnostic
accuracy, or clinical utility.

A total of 26 primary studies were included
in the authors’ results, each applying ML
techniques to human subjects with ILD and
reporting relevant diagnostic, prognostic,

or biomarker outcomes. An additional set of
systematic reviews and expert perspectives
was referenced in the discussion to
contextualise findings, but was not included
in the formal study count.

Exclusion criteria included studies not
directly related to ML applications in ILDs,
studies focused solely on non-human
subjects, studies lacking sufficient detail
on methodology or results, and non-peer-
reviewed material, including editorials,
commentaries, conference abstracts, and
technical white papers.

Data Synthesis and Analysis

A narrative synthesis approach was

used due to the substantial heterogeneity
among included studies in terms of ML
models, data types, ILD subtypes, and
outcome measures. Given the early-stage
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Figure 1: PRISMA flow diagram of literature selection for a review of machine learning applications in interstitial
lung disease.

Records identified from:
Databases (N=136)
PubMed=70
Google Scholar=18
|IEEE Xplore=16
Cochrane Library=32

'

Records screened

(n=112)
}

Reports assessed for eligibility

(n=48)
:

Studies included in
qualitative synthesis
(n=26) (Table 1)

|dentification

Screening

Included

Records removed before screening:
Duplicate records removed
(n=24)

Records excluded (n=64):
Irrelevant disease (e.g., COPD, asthma)
Did not use ML/AI

Reports excluded (n=48):

Not primary research (review, editorial
Animal/in vitro study

Duplicate of included paper

ML: machine learning.

and exploratory nature of Al applications

in ILD, with limited standardisation across
methodologies, a narrative framework
allowed for meaningful comparison, critical
appraisal, and integration of diverse findings
that would not be suitable for quantitative
meta-analysis.

A total of 26 studies were included and
analysed for this review, focusing on the
application of ML in ILD. A summary of the
results is shown below in Table 1.

DISCUSSION

12

The application of ML in ILD represents
a significant advancement in healthcare,
offering promising improvements in
diagnosis, prognosis, and treatment.

As ML technologies continue to evolve,
they provide increasingly sophisticated
tools for analysing complex medical
data, potentially addressing some of the

longstanding challenges in ILD management.

A pivotal aspect of these advancements
is the comparison of ML models with

Respiratory « November 2025 « Copyright © 2025 EMJ

traditional diagnostic methods, including
human readers, and the impact of these
comparisons on clinical practice. Mekov et
al.3* offered an early overview, outlining how
Al tools could bridge radiologic and clinical
domains by supporting differential diagnosis
and care planning in respiratory medicine,
while Chan and Auffermann3® emphasised
the potential of Al to unify multimodal
imaging in diffuse lung diseases.

Machine Learning in the Diagnosis of
Interstitial Lung Disease

Radiological evaluation of ILD, particularly
the identification and characterisation of
pulmonary fibrosis, presents persistent
challenges, even for experienced thoracic
radiologists.®® A key difficulty lies in
detecting honeycombing, a defining feature
of usual interstitial pneumonia (UIP), which
is central to diagnosis but subject to high
interobserver variability and diagnostic
uncertainty.® This diagnostic ambiguity is
especially pronounced in patients who do not
meet criteria for a definitive UIP pattern.%”
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Table 1: Summary of key studies on machine learning applications in interstitial lung disease. (Continued)

Study ML method Date type Objective Key findings Performance
Mei et al.* DL CT Classification of ILD High accuracy in AUROC: 0.91-
patterns classifying ILD 0.94
subtypes
Fanidis et al.”® Radiomics + ML CT Radiomic feature Radiomics Acc: 85%
analysis in ILD differentiated ILD
types
Wu et al.” CNN CT Predict progression | Predictive of disease AUROC: 0.88
worsening
Ahmad et al.”? DL CT Differentiation of ILD Fibresolve model AUROC: 0.92
types outperformed
radiologists
Walsh et al.”® CNN CT Diagnose UIP DL matched expert Sensitivity: 73%;
radiologists Spec: 84%
Chutia et al. SVM CT ILD classification Effective feature- Acc 87%
based classification
Nishikiori et al.™ CAD CXR Screening for High sensitivity for Sensitivity: 94.7%
fibrosing ILD fibrosing patterns
Aoki et al.’® CNN CT Detect SSc-ILD Good correlation AUROC: 0.89
with clinical scores
Karampitsakos et ML classifier Biomarkers ILD diagnosis via Identified key Acc: 90%
al.V serum profiles diagnostic markers
Huang et al.'® Random forest CT Differentiate ILD Improved diagnostic AUROC: 0.90
types accuracy
Kim et al.’® Support vector CT UIP prediction ML matched expert AUROC: 0.93
machine consensus
Qiang et al.?° CNN CT Automated pattern Effective pattern Acc: 88%
detection classification
Oh et al.” Multimodal Al CT+Clincal IPF diagnosis and Improved patient AUROC: 0.91
staging stratification
Maciukiewicz et al.?2 Random forest Clinical+Genetic Predict SSc-ILD Identified risk C-index: 0.84

prediction features

al.3°

classifier

in ILD

Devaraj et al.?® Al Scoring CT Disease burden Correlated with Not specified
quantification clinical outcomes
Sun et al.>* Al CT IPF survival Accurate 3-year AUROC: 0.85
quantitative model prediction survival estimation
Chen et al.>® Al prognostic model CT Predict IPF Strong prognostic AUROC: 0.87
outcomes performance
Poynton et al.?® ML regression CT+clinical IPF progression Improved RMSE improved
modelling longitudinal
predictions
Choe et al.?” DL CT Content-based Effective similarity | Top-1accuracy: 80%
retrieval matching
Qin et al.?® ML classifiers Biomarkers Diagnose RA-ILD Biomarker model AUROC 0.89
had high accuracy
Agarwala et al.?® Deep learning CT ILD pattern Efficient screening AUROC 0.86
screening tool
Moran-Mendoza et Deep learning CT Predict mortality risk Model output Not specified

correlated with
mortality across ILD
subtypes

EMJ
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Table 1: Summary of key studies on machine learning applications in interstitial lung disease. (Continued)

ML method Date type Objective Key findings Performance
Ukita et al.® CAD CXR Detect fibrosing ILD Promising CAD AUROC 0.87
application
Yu et al.?? Stress testing CNN CT Model robustness Performance Robustness- tested
analysis declined with
variability
Walsh et al.?” CNN CT Classify fibrotic lung Accurate subtype Accuracy 76%
disease classification

Acc: accuracy; AUROC: area under the receiver operating characteristic curve; C-index: concordance index; CAD:
computer-aided detection; CNN: convolutional neural network; CXR: chest X-ray; DL: deep learning; ILD: interstitial
lung disease; IPF: idiopathic pulmonary fibrosis; ML: machine learning; RA-ILD: rheumatoid arthritis—associated inter-
stitial lung disease; RMSE: root mean square error; Spec: specificity; SS-ILD: systemic sclerosis—associated interstitial
lung disease; SVM: support vector machine; UIP: usual interstitial pneumonia.

Chang et al.®® addressed this clinical gap
by training an ML classifier on CT scans
labelled with pathology- and clinical-
supported diagnoses, intentionally
excluding cases with clear UIP to focus

on patients who are classified as ‘grey
zone, where radiologic interpretation alone
may be insufficient.®® Such models are
especially valuable in real-world practice,
where diagnostic confidence varies and
multidisciplinary discussion is often required.

Building on this, Castillo-Saldana et

al.®® applied quantitative CT metrics to
distinguish fibrotic ILD from emphysema,

a common diagnostic dilemma. By
leveraging densitometric and histogram-
based features, their model captured

subtle structural differences not readily
appreciated by visual inspection,
suggesting a role for quantitative imaging

in phenotyping patients with overlapping
clinical or radiographic features.®®
Complementing this, Ukita et al.>" developed
a deep learning (DL)-based computer-aided
detection system to identify fibrosing ILD on
plain chest radiographs. Though the study
did not directly compare ILD to emphysema,
its use in a broad screening context
highlights the potential of computer-aided
detection tools to navigate diagnostic
ambiguity and improve early identification.®

Convolutional neural networks (CNN)
are particularly effective in medical imaging

14 Respiratory « November 2025 « Copyright © 2025 EMJ

due to their structure and functionality.*°
They start by representing an input image
as a grid of numbers, with each number
indicating the brightness of a pixel.

CNNs use small squares called filters

that slide across the image, performing

a mathematical operation known as
convolution to highlight specific features
like edges or colours.*® Following this,
pooling reduces the image’s size by keeping
only the most important parts, allowing

the network to focus on key features

while enhancing processing speed.*°

CNNs consist of multiple layers, with each
layer recognising increasingly complex
patterns, from basic edges in early layers to
complete objects in later ones. Ultimately,
the network classifies the image, identifying
it as, for example, a cat or a dog, based on
the features it has learned. This process
enables CNNs to analyse and interpret a
wide variety of images effectively. One

of the key advantages of CNNs is their
translation invariance, meaning they can
recognise objects regardless of their
position in the image. Beyond medical
imaging, CNNs are widely used in real-
world applications, including facial
recognition and autonomous driving.4°

In a pivotal study by Mei et al.,* CNN and
vision transformer models were evaluated
for both ILD subtype classification and
survival prediction.* Using CT scans and
clinical data, the joint CNN-multilayer
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perceptron model achieved an AUROC of
0.94, significantly outperforming a panel
of seven human readers, whose combined
AUROC was 0.88. The panel included
radiologists and pulmonologists with
varying experience levels, all of whom were
provided identical CT scans and clinical
metadata. The model also demonstrated
higher sensitivity (90%) and specificity
(87%) for diagnosing UIP compared to
readers (sensitivity: 80%; specificity:
83%).* These findings show the potential
of ML to enhance diagnostic precision in
ILD, particularly in complex or borderline
cases. Still, the single-centre nature of this
study warrants cautious interpretation until
external validation is achieved.

In an early study from India, Agarwala et
al.?° developed a DL algorithm to detect ILD
patterns on high-resolution CT, achieving
an AUROC of 0.91.2° This work is particularly
notable for demonstrating the scalability
and adaptability of Al models across diverse
healthcare systems, including resource-
limited environments.

Ahmad et al.”? developed Fibresolve, an
ML tool designed to identify IPF from
other ILDs using thin-slice CT imaging.’?
Notably, the algorithm outperformed
clinical panels in cases with atypical UIP
patterns that often require surgical biopsy
for definitive diagnosis. Among patients
who did not meet imaging criteria for

IPF but had =3 mm CT slices, Fibresolve
achieved a diagnostic yield of 53.1% and
a specificity of 85.9%. These figures are
particularly meaningful, considering that
traditional diagnostic pathways for such
cases are often prolonged and invasive.
By reducing the median time to diagnosis
(213 days), Fibresolve could meaningfully
expedite care and reduce the need for
invasive procedures. The system has since
received FDA approval, further supporting
its potential utility in clinical practice.

Walsh et al.®® developed a DLalgorithm
using 1,157 anonymised, high-resolution
CT scans to classify fibrotic lung disease.*®
The algorithm achieved an accuracy of
76.4%, surpassing 66% of 91 thoracic
radiologists, whose median accuracy was
70.7%. Additionally, the algorithm showed

CC BY-NC 4.0 Licence ¢ Copyright © 2025 EMJ
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good interobserver agreement (weighted
kappa [kw ]=0.69), exceeding 62% of the
radiologists (kw=0.67), and offered near-
instantaneous diagnoses, taking only 2.31
seconds to evaluate 150 four-slice montages.
This rapid and reproducible performance
highlights the efficiency and reliability of ML
algorithms compared to human readers,*?
but we must bear in mind that real-world
performance may vary, and such systems
would require rigorous external validation.
As Yu et al.*? point out, real-world
performance may diverge from training data
benchmarks. Their study retrospectively
evaluated DL models for IPF diagnosis

and found variability in performance when
applied to different institutions and CT
acquisition protocols, emphasising the
importance of cross-site robustness testing
before clinical deployment.3?

A notable development in ML for ILD
diagnosis was achieved by researchers

at Sapporo Medical University Hospital,
Japan, who created a DL model for
detecting chronic fibrosing ILDs using chest
radiographs.” This model, which is the
first to employ chest radiographs instead
of CT scans, achieved an impressive area
under the curve (AUC) of 0.979, with a
sensitivity of 0.896 and specificity of
1.000. This performance is comparable

to that of experienced radiologists and
pulmonologists, demonstrating the model’s
potential as a valuable diagnostic tool.”

In the realm of histopathology, Fukuoka

et al.#' conducted a large international
study demonstrating that Al could help
standardise histopathologic diagnoses of
UIP by reducing interobserver variability
among expert pathologists, establishing

a potential reference framework for

future diagnostic tools.*’ Complementing
this, Chung et al.*? evaluated a genomic
classifier capable of identifying UIP even
in patients lacking classic high-resolution
CT patterns, reinforcing the value of Al-
driven molecular diagnostics in complex or
ambiguous cases.*?

It is also worth mentioning that, although
most current Al applications in ILD are
geared toward recognition of fibrotic
disease patterns, there is increasing
recognition that identifying pre-fibrotic

* November 2025 « Respiratory

15


https://www.emjreviews.com/
https://www.emjreviews.com/therapeutic-area/respiratory/
https://creativecommons.org/

@® Article

interstitial abnormalities, such as interstitial
lung abnormalities or early non-specific
interstitial pneumonia, can improve clinical
outcomes by enabling earlier intervention.”™
Incorporating Al into radiologic and
histopathologic pipelines may enhance
pattern recognition of subtle pre-fibrotic
changes and support multidisciplinary
team decision-making before irreversible
damage occurs. Al's application in
identifying pre-fibrotic conditions remains
an underexplored but crucial frontier. Early
detection, even before irreversible fibrosis
sets in, could substantially improve long-
term outcomes and reduce the need for
invasive diagnostics.

Finally, content-based image retrieval
systems are emerging as novel Al tools with
both diagnostic and educational value. Choe
et al.? developed a DL-based content-
based image retrieval system that retrieves
visually similar annotated CT scans to assist
with ILD subtype recognition, achieving an
AUROC of 0.922 for distinguishing UIP from
nonspecific interstitial pneumonia.?” These
tools may enhance radiologists’ confidence,
reduce ambiguity in borderline cases, and
promote standardisation across institutions.

Machine Learning in Biomarker
Discovery for Idiopathic

Pulmonary Fibrosis

While imaging remains the cornerstone of
ILD diagnosis, biomarker discovery through
ML is an increasingly active and promising
frontier. These approaches aim to augment
diagnostic accuracy, stratify risk, and
ultimately tailor treatment by extracting
patterns from high-dimensional molecular
data, spanning transcriptomics, proteomics,
and gene expression profiling.

A notable example is the work by Kim et
al.,”* who applied ML to high-dimensional
transcriptional data to classify UIP versus
non-UIP patterns in ILD." Their model
demonstrated high diagnostic accuracy,
supporting the potential of molecular
classifiers as adjuncts to radiologic and
histopathologic assessment. This early,
yet pivotal, study laid the groundwork for
multi-omic ML models, bridging the gap
between molecular pathology and clinical

116 Respiratory « November 2025 « Copyright © 2025 EMJ

phenotyping in ILD. Building on this, Huang
et al.'® extended the scope to plasma
proteomics, applying ML to quantify over
1,300 proteins from patients with ILD and
controls.” Their model achieved near-
perfect discrimination (AUROC: 0.99 for
ILD versus control; AUROC: 0.90 for IPF
versus non-IPF), suggesting that proteomic
signatures may soon complement imaging
in classifying ILD subtypes. Importantly,
this study highlights how proteomics could
enable earlier and less invasive diagnosis if
validated in external cohorts.

Fanidis et al.”® employed the eXtreme
gradient boosting ML algorithm on gene
expression data to explore potential
molecular signatures associated with
pulmonary fibrosis.’® The model achieved
an encouraging accuracy (range: 0.85—
0.95) and identified several candidate
genes, including IL13Ra2 and PAPSS2,

with possible roles in fibrotic pathways.
IL13R02 is a key receptor that IL-13 uses

to induce fibrosis, and its signalling is
crucial for the production of TGF-B,*3 a
major contributor to fibrotic processes

in chronic inflammatory diseases.***> To
interpret the model’s predictions, Shapley
additive explanation analysis was utilised,
quantifying the contribution of each
feature (gene) to the overall prediction.
This methodology offers insight into model
decision-making and helped to identify 76
candidate genes potentially associated
with fibrosis. While these findings highlight
promising avenues for further investigation,
it is important to note that these biomarkers
remain exploratory and have yet to undergo
validation in large, prospective cohorts.

Wu et al. conducted a parallel study
focusing on differentially expressed genes
and identified four critical biomarkers:
FHL2, HPCALT, RNF182, and SLAIN1."
These genes have demonstrated validated
predictive value, particularly highlighting
SLAINT for its potential role in informing
future therapeutic strategies. Notably, FHL2
has been associated with tissue remodelling
and fibrosis, further emphasising its
significance within the context of IPF.
Although these genes demonstrate
predictive potential within retrospective
datasets, their utility as diagnostic or
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therapeutic biomarkers also requires further
clinical validation, including reproducibility
across diverse populations.

Lastly, Qin et al.?® focused on rheumatoid
arthritis-associated ILD, developing ML
classifiers using support vector machines
and random forests to detect transcriptomic
signatures specific to this subset.?®

Their model yielded strong diagnostic
performance (AUROC: 0.89), reinforcing

the idea that ML can help surface disease-
specific molecular fingerprints in clinically
overlapping ILD phenotypes.

Machine Learning in Interstitial

Lung Disease Prognosis

In their expert review, Bendstrup et al.*®
emphasised the importance of structured
ILD monitoring using symptoms, spirometry,
and imaging. These routine clinical
touchpoints offer a natural opportunity for
ML to augment care, whether by automating
change detection on chest CTs or flagging
subtle declines in pulmonary function tests
before they cross conventional thresholds.*®
Within this prognostic domain, Chutia et

al.* developed a model to predict lung
function decline in IPF by analysing 1,554
forced vital capacity (FVC) records from

176 patients, along with demographic data,
smoking status, and CT scans.'* Using
quantile regression combined with CNNs, the
model achieved a striking 92% accuracy in
forecasting lung function decline, supporting
ML's potential to inform timely intervention
and improve disease monitoring.

Imaging-based models have also

shown significant promise. Chen et al.?
trained a DL algorithm topredict mortality
in IPF using chest CT features, achieving
high predictive accuracy and reinforcing the
role of imaging biomarkers in prognosis.?
Similarly, Aoki et al.’® demonstrated that
a DL-based quantification tool correlated
strongly with FVC and diffusing capacity
of the lungs for carbon monoxide,

and achieved an AUROC of 0.78 for
predicting ILD progression.’® These
findings highlight the utility of
quantitative CT metrics as surrogates

for physiologic decline when automated
via deep learning pipelines.
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Expanding this work, Teramachi et al.*®
developed a longitudinal DL model that
incorporated clinical data and environmental
exposures to predict acute exacerbations
and mortality in patients with ILD.*® Walsh et
al.,”® who had earlier applied DL to classify
fibrotic lung disease, extended their model
to predict mortality in progressive fibrotic
ILD, demonstrating the broader applicability
of Al-derived radiologic scores in outcome
prediction.” Likewise, Moran-Mendoza et
al.?% found that their ML-derived CT classifier
score correlated significantly with mortality
in a real-world ILD cohort, highlighting the
prognostic potential of Al beyond simple
subtype classification.3°

Other models have extended ML-based

prognostic prediction to rare ILD phenotypes.

For instance, Qiang et al.?° trained a random
forest model on CT and serum biomarkers
to predict rapid progression in idiopathic
inflammatory myopathy-associated ILD,
achieving an AUC of 0.883.2° Oh et al.”
similarly demonstrated that DL-derived
fibrosis extent on CT predicted transplant-
free survival independently of radiologist-
assigned pattern.?" A related application

of radiomics-based ML was explored by
Karampitsakos et al.,”” who developed

a random forest classifier trained on
quantitative CT features to predict fibrotic
ILD progression in survivors of COVID-19."
Their model achieved robust predictive
performance at 3 and 6 months (AUC: 0.827
and 0.851, respectively), demonstrating the
adaptability of ML-based prognostic tools
beyond idiopathic disease and into viral-
induced ILD phenotypes. Other radiomics
applications further support the utility of
quantitative imaging. Chassagnon et al.*’
developed an automated DL system to
assess ILD severity in systemic sclerosis
using CT imaging.®” Maciukiewicz et al.?
demonstrated that radiomic features from
high-resolution CTs could predict FVC
decline in systemic sclerosis-associated ILD
using a random forest classifier.22 Sun et
al.?* applied ensemble learning in connective
tissue disease-associated ILD, integrating
demographics, radiographic data, and
pulmonary function tests to predict long-
term mortality.?*

* November 2025 « Respiratory

17


https://www.emjreviews.com/
https://www.emjreviews.com/therapeutic-area/respiratory/
https://creativecommons.org/

@® Article

Figure 2: Challenges and future directions of machine learning in interstitial lung disease.
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Recent studies have highlighted the
prognostic potential of imaging-based

ML models. In a post hoc analysis of a
Phase Il trial, Devaraj et al.?® used the
e-Lung platform to derive the weighted
reticulovascular score (WRVS), which
outperformed traditional metrics such as
diffusing capacity of the lungs for carbon
monoxide in predicting disease progression
in patients with IPF over 52 weeks.?®

In the study conducted by Mei et al.,* they
also developed a model for ILD prognosis.*
The study aimed to predict 3-year mortality
in patients with ILD using advanced ML
models: a Long Short-Term Memory model
and a transformer model. Both models
incorporated 165 features, 32 high-level

CT features extracted from chest CT scans
using a pretrained CNN model, and 18

Respiratory « November 2025 « Copyright © 2025 EMJ

clinical variables, such as medication history
and treatment details. These features

were longitudinally assessed to create
dynamic models for survival prediction.*
The transformer model consistently
outperformed the Long Short-Term Memory
model, showing a 15.8% better performance.

By the third year, the transformer

model's AUROC of 0.868 indicated strong
predictive performance for 3-year mortality,
signifying that the model could distinguish
between patients who would survive and
those who would not with high accuracy.*
The model's negative predictive values
(ranging from 89.66-94.55%) suggest that
it was particularly reliable at identifying
patients who would survive, minimising
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false negatives. The increase in sensitivity
from 54.55% after 1 year to 72.73% by the
third year further demonstrates that the
model became more accurate in identifying
patients at risk of death as more follow-

up data was added. This improvement
highlights the importance of continuous
clinical monitoring, with the model gaining
more predictive power as patient history and
response to treatment accumulate over time.
This suggests that longerfollow-up periods
allow for more accurate prognosis and

could help clinicians make more informed
decisions about patient management.4

Radiomics has also shown promise

in detecting subclinical progression.
Poynton et al.?® applied radiomic

analysis to serial chest CTs in high-risk
individuals and successfully differentiated
progressive interstitial lung abnormalities
from stable cases, often before overt
clinical or functional decline was
apparent.?® This highlights the role of
radiomics in early surveillance strategies.
Molecular markers may further augment
prognostic models. Libra et al.*” recently
proposed candidate plasma biomarkers
for IPF progression using ML-based
analysis, offering a glimpse into how future
prognostic tools might integrate multi-omic
data to personalise risk stratification.*”

Finally, the Duke EMPOWER app (Duke
University Health System, Durham,North
Carolina, USA) exemplifies the integration
of digital tools with Al to enhance patient
engagement and research participation.*®
By offering ILD-specific education, enabling
self-screening for research studies, and
collecting longitudinal data on patient
outcomes and biometric measures, the app
illustrates a practical use of technology in
managing rare diseases.*® Its success in
increasing study enrolment and promoting
healthy behaviours underscores the
potential for Al-driven tools to improve
clinical research and patient management.
This direct-to-patient approach presents

a promising model for other conditions,
bridging the gap between technology and
personalised healthcare.
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Challenges and Future Directions
Despite the promising advancements

in ML for diagnosing and managing ILD,
several challenges must be addressed to
fully realise its potential (Figure 2). One
significant challenge is the integration of
ML systems with existing electronic health
record systems. Seamless integration is
crucial for ensuring that ML tools are easily
accessible and effectively utilised in clinical
practice. However, this integration often
involves complex technical and regulatory
hurdles, including interoperability issues
and the need for robust data exchange
protocols. Addressing these challenges will
be essential for the widespread adoption of
ML tools in healthcare.

The generalisability of current models
remains a significant limitation.*® Of the
seven studies included in this review, four
focus exclusively on IPF, which, though
clinically significant, represents only a small
subset of the more than 200 ILD subtypes.
As a result, current ML models are often
optimised for the recognition of fibrotic
patterns associated with IPF, potentially
limiting their diagnostic performance when
applied to less common or non-fibrosing
ILDs such as sarcoidosis, hypersensitivity
pneumonitis, or connective tissue disease-
associated ILD. Also, expanding model
training and validation across the full ILD
spectrum is essential to ensure broader
clinical applicability and to prevent
inequities in diagnosis and treatment. In
parallel with these diagnostic innovations,
Soffer et al.>® conducted a comprehensive
systematic review of Al applications in

ILD, highlighting the growing body of work
focused on chest CT analysis.*° Their
review emphasises the heterogeneity in
model architectures, training datasets, and
outcome definitions, which collectively
pose barriers to reproducibility and clinical
adoption. Importantly, they call for greater
standardisation and transparency in Al
development, a theme echoed throughout
the authors’ review. These findings reinforce
the need for interpretable and externally
validated models before widespread
implementation in clinical workflows.

Additionally, a challenge lies in the
availability and quality of training data.
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ILDs are relatively rare and heterogeneous
diseases, and the development of robust
ML models requires large, well-annotated,
and structured datasets, resources typically
available only at large academic or tertiary
care centres. This concentration of data
introduces potential biases, as models may
underperform in community settings or
underserved populations where disease
presentations, imaging protocols, and EHRs
may differ. Furthermore, smaller centres
often lack the infrastructure to collect high-
resolution imaging data or comprehensive
clinical annotations necessary for model
development.*® Addressing this limitation
will require greater collaboration across
institutions, federated learning approaches,
and efforts to democratise access to high-
quality ILD datasets.

Another obstacle is acceptance of Al
among clinicians, hospitals, and patients.
Many healthcare professionals may be
hesitant to rely on Al due to concerns
about its reliability and the potential for
reduced human oversight.>2 Building trust
in Al systems will require demonstrating
their efficacy through rigorous validation
studies and providing adequate training for
users.’'52 Additionally, patient acceptance
of Al-driven diagnostics will depend on
transparency about how these tools work
and how patient data is handled.

Liability concerns also pose a significant
challenge.® Determining accountability

when Al systems make mistakes is complex.

If an Al system provides an incorrect
diagnosis or treatment recommendation, it
raises questions about who is responsible:
the developers, the healthcare providers,
or the institutions using the technology.
Clear guidelines and legal frameworks

will be necessary to address these issues
and ensure that patients receive safe and
effective care.®®

Interpretability remains a key challenge
to Al adoption in ILD, as many high-
performing models, such as CNNs and
transformers, operate as ‘black boxes’
with limited transparency. This lack of
explainability can hinder clinician trust
and complicate integration. Clinicians are
understandably hesitant to act on an Al’s
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prediction without understanding the basis,
especially in high-stakes diagnoses like ILD
subtyping or prognostication.

Regulatory Considerations

To advance clinical impact, future

research should prioritise prospective
validation and implementation studies that
assess ML tools in real-world settings,
measuring outcomes like diagnostic
accuracy, workflow integration, and patient
benefit. These studies are essential to move
beyond retrospective analysis and ensure
meaningful clinical adoption.

Privacy concerns are another critical

issue. The use of Al in healthcare involves
processing vast amounts of sensitive
patient data and ensuring the protection

of this data; addressing potential privacy
breaches is paramount.5* Strategies such
as federated learning, which allows models
to be trained on decentralised data without
compromising privacy, offer promising
solutions but require further development
and validation.%®

From a regulatory and ethical perspective,
compliance with evolving frameworks is
critical. The FDA has released guidance

on Software as a Medical Device (SaMD)
and adaptive Al systems, emphasising
transparency, clinical validation, and post-
market monitoring.53%¢ ML tools for ILD must
align with these standards, particularly
when offering diagnostic suggestions that
could influence patient care. Likewise,
adherence to data privacy regulations,

such as the Health Insurance Portability
and Accountability Act (HIPAA) in the

USA, and the General Data Protection
Regulation (GDPR) in the European Union,
is paramount. These frameworks mandate
strict governance over patient data, informed
consent, and secure data storage and
transfer, especially when training models on
multi-institutional or international datasets.

Finally, model deployment should emphasise
ethical use, explainability, and integration
into clinical workflows. Collaboration with
regulatory bodies, clinicians, and patients
will be key to ensuring that Al tools are safe,
effective, and trusted in practice.> Al should
be viewed not as a replacement for expert
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clinical judgment but as an assistive tool
aimed at improving diagnostic consistency
and efficiency in diverse care settings.*®

CONCLUSION

ML is revolutionising the diagnosis and
management of ILD. From CNNs and vision
transformers that have outperformed
experienced human experts, to integrative
models that combine imaging and clinical
data, ML has demonstrated substantial
potential for improving diagnostic accuracy
and patient outcomes. Applications like the
Fibresolve system and biomarker discovery
pipelines also highlight the versatility and
promise of ML in ILD care.

Although these advancements exist,
real-world clinical adoption remains
limited. To bridge this gap, future research
must prioritise prospective validation
studies across diverse clinical settings.
Such studies should assess not only
diagnostic and prognostic accuracy, but
also the impact of ML tools on clinical

Article

decision-making, patient outcomes, and
workflow efficiency. Furthermore, model
deployment studies are needed to
evaluate integration with EHRs, clinician
usability, and patient acceptability.

Future work should also prioritise the
development of interpretable models to
enhance clinician trust and transparency,
external validation across multicentre

and multinational cohorts to strengthen
generalisability, the adoption of federated
learning and secure data-sharing
frameworks to address privacy concerns
and expand access to high-quality ILD
datasets, and early regulatory engagement
to ensure alignment with standards set by
the FDA, HIPAA, and GDPR.

Realising the full clinical potential of

ML in ILD will require a coordinated
approach that emphasises prospective
evaluation, ethical implementation, and
multidisciplinary collaboration. Progress in
this space will depend on integration into
real-world practice.
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