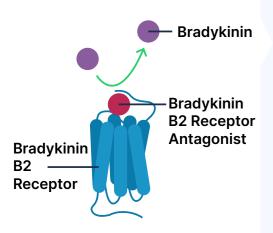


Bradykinin-Mediated Angioedema:

Pathways, Physiology, and Disease Mechanism

The publication of this infographic was funded by Pharvaris, and is based on a Pharvaris-sponsored symposium which took place on the 29th May 2025 in Budapest, Hungary.

EMJ. 2025; https://doi.org/10.33590/emj/KHZH2916



Bradykinin Production

BK is formed through several biological pathways, which can

be either kallikrein-dependent or -independent.¹⁻³ Bradykinin exerts its effects by converging on and activating specifically the bradykinin B2 receptor.^{4,5}

The dysregulation of bradykinin B2 receptor signalling can contribute significantly to a range of inflammatory disorders^{6,7}

Bradykinin B2 Receptor Antagonism

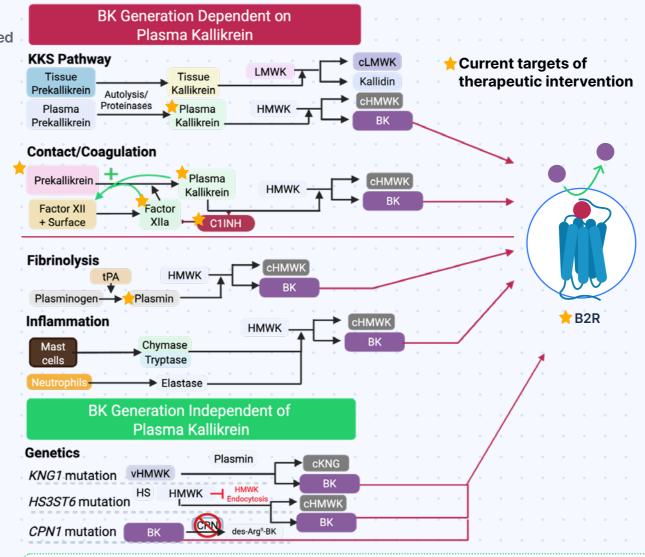
Consequently, B2 receptor antagonism represents a potential therapeutic target for AE-BK, characterised by vascular leakage and tissue swelling.^{6,7}

Based on their pathophysiology, bradykinin B2 receptor antagonism has been investigated for potential therapeutic effects in:

HEREDITARY ANGIOEDEMA

Had significant therapeutic effects in the acute treatment setting⁸

CHRONIC SEVERE ASTHMA


Improvement in measured pulmonary function vs placebo; however, there was no significant clinical benefit⁹

INTRADIALYTIC HYPOTENSION

Reduced the reduction in blood pressure in patients with IDH, and had no evident effects in patients without IDH¹⁰

COLD-INDUCED URTICARIAL SYNDROME

Had effects on cold-induced urticarial symptoms including rash and headache¹¹

Unmet Needs in AE-BK

Unmet needs in AE-BK for ODT and LTP management approaches should address underlying mechanisms from all subgroups of AE-BK, as well as patient needs and expectations.

Characterising AE-BK

The WAO/EAACI guidelines, and more recently the DANCE consensus, were developed to provide global consensus in defining different subtypes of AE.^{6,12}

The differential diagnosis of AE subtypes remains **complex and time-consuming**, driving ongoing efforts to identify measurable biomarkers to facilitate the **diagnosis and classification** of AE-BK and AE subtypes.¹³

Moreover, access to testing procedures varies between clinics, causing delays in diagnosis.⁶

Pathway-specific testing is limited, with current diagnostic indicators unable to distinguish between AE-BK and other AE types.^{14,15}

Abbreviations: AE: angioedema; Arg: arginine; BK: bradykinin; cHMWK: cleaved high molecular weight kininogen; cLMWK: cleaved high molecular weight kininogen; cPNI: carboxypeptidase N 1 gene; cKNG: cleaved kininogen; DANCE: Definition, Acronyms, Nomenclature, & Classification of Angioedema; FXII: Factor 12; HAE: hereditary angioedema; HMWK: high molecular weight kininogen; HS: heparan sulfate 3-O-sulfotransferase 6 gene; lDH: intradialytic hypotension; KKS: kallikrein–kinin system; KNG1: kininogen; LTP: long-term prophylactic; ODT: on-demand; QoL: quality-of-life; tPA: tissue plasminogen activator; v: variant; WAO/EAACI: World Allergy organization/European Academy of Allergy and Clinical Immunology.