Effect of 8-Week Exercise-Based Rehabilitation on Immune Cell Counts in Post-COVID Syndrome Following Hospitalisation: An RCT

Authors: Nicolette C. Bishop,¹ Malik Hamrouni,¹ *Enya Daynes,² Molly M. Baldwin,² George Mills,² Rachael Evans,³ Chris E. Brightling,³ Sally J. Singh,³ Matthew J. Roberts¹

- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre- Respiratory, University Hospitals of Leicester NHS Trust, UK
- NIHR Leicester Biomedical Research Centre -Respiratory, University of Leicester, UK
 *Correspondence to e.daynes@nhs.net

Disclosure: Bishop has received support for the present manuscript from the National Institute for Health Research (NIHR)-Leicester Biomedical Research Centre. Hamrouni has received support for the present manuscript from the NIHR -Leicester Biomedical Research Centre. Brightling has received support for the present manuscript from the NIHR-Leicester Biomedical Research Centre and PHOSP-COVID NIHR UKRI; and grants and consultancy fees from 4D Pharma, Areteia, AstraZeneca, Chiesi, Genentech, GlaxoSmithKline, Mologic, Novartis, Regeneron Pharmaceuticals, Roche, and Sanofi, with payment to the institution. Daynes has received consulting fees from the Neurosciences and Mental Health Institute (NMHI) Grant Committee for Long COVID; payment or honoraria for lectures from ClinicalPhysio; and held a leadership or fiduciary role in the British Thoracic Society (BTS) Pulmonary Rehabilitation Specialist Advisory Group and as a Quality Lead in the Royal College of Physicians (RCP) Pulmonary Rehabilitation Services Accreditation Scheme. Evans has received support for the present manuscript from UK Research and Innovation (UKRI), the Medical Research Council (MRC), and the NIHR; grants from the Wolfson Foundation and Genentec/Roche, outside of the current work, with payment to the author; consulting fees from AstraZeneca/Evidera for Long COVID; speaker fees from Boehringer and Moderna; support for attending meetings and/or travel from Chiesi; and held unpaid leadership roles as Chair of the ERS Group 01.02 (Pulmonary Rehabilitation and Chronic Care) and the ATS Pulmonary Rehabilitation Assembly. Roberts has received support for the present manuscript from the NIHR-Leicester Biomedical Research Centre. The other authors have declared no conflicts of interest.

Acknowledgements: The authors would like to thank the contributions of the Pulmonary

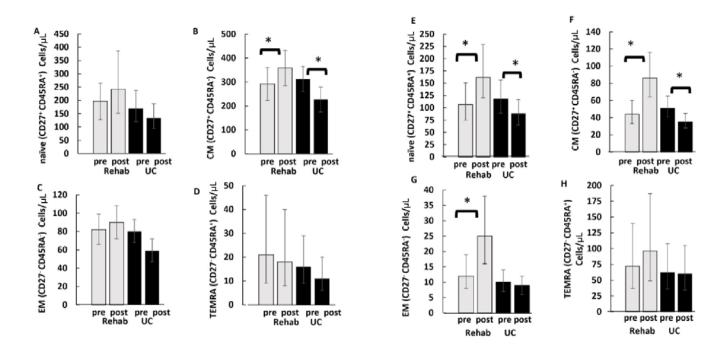
Rehabilitation teams at the University Hospitals of Leicester for their support in delivering COVID-19 rehabilitation.

Keywords: COVID-19, exercise, immunology.

Citation: EMJ Respir. 2025;13[1]:69-70. https://doi.org/10.33590/emjrespir/YGPK7634

BACKGROUND AND AIMS

Survivors of severe COVID-19 may exhibit immune dysregulation, characterised by reduced naïve and increased senescent and exhausted T cell populations. Regular exercise is associated with increased naïve and reduced exhausted and senescent T cell populations, and may therefore help resolve post-COVID-19 immune dysregulation.


The aim of this study was to explore the effect of an 8-week exercise-based rehabilitation intervention on cluster of differentiation (CD)4 and CD8 T cells and subsets in participants with post-COVID syndrome following hospitalisation, compared with usual care.²

MATERIALS AND METHODS

This was a sub-study in a single-blind RCT comparing an 8-week supervised rehabilitation programme to usual care alone. The rehabilitation programme consisted of twice weekly, individually prescribed and progressed aerobic and strength training, and a programme of education/self-management techniques, supplemented by a home exercise programme. Venous blood samples were collected pre- and post- intervention, and T cell immunophenotyping via flow cytometry was performed and analysed using linear mixed models.

Figure 1: Effect of exercise versus usual care on cluster of differentiation 4+ (A-D) and cluster of differentiation 8+ (E-H) subset changes from pre- to post-trial.

*Significant difference from pre and within trial.

Data are mean (95% CI) and are adjusted for sex and baseline value of the dependent variable.

CD: cluster of differentiation; CM: central memory; EM: effector memory; TEMRA: terminally differentiated effector memory; UC: usual care.

RESULTS

Thirty-one participants (n=13 male; 42%) completed blood samples pre- and postintervention: 13 in the rehabilitation group and 18 in usual care alone. At 8 weeks, there were statistically significant differences in the number of central memory and naive CD8+ T cells, with an increase observed in rehabilitation and a decrease observed in usual care (all p<0.05; Figure 1). The number of CD8+ effector memory T cells increased in rehabilitation only (p<0.05), with no change in usual care alone (Figure 1). There were statistically significant differences in natural killer cells in the rehabilitation group compared to usual care alone (mean [CI]; rehabilitation pre: 271 [198-345] cells/µL; rehabilitation post: 378 [298-459] cells/ µL; usual care pre: 302 [236-367] cells/ µL; usual care post: 265 [200–331] cells/ μL; p<0.05). There were no statistically

significant differences in inflammatory and cardiometabolic biomarkers, including C-reactive protein, IL-6, cholesterol, triglycerides, and glucose.

CONCLUSION

Exercise-based rehabilitation could be a potential therapy for restoring post-COVID-19 immune dysregulation.

References

- Lord JM et al.; PHOSP-COVID Study collaborative group; ISARIC4C investigators. Accelerated immune ageing is associated with COVID-19 disease severity. Immun Ageing. 2024;21(1):6.
- Bishop NC et al. Effect of 8-week exercise-based rehabilitation on immune cell counts in post-COVID syndrome following hospitalisation: a randomised controlled trial. Presentation 6534. ERS Congress, 27 September-1 October, 2025.

