

IL-33 Is Not Just IL-33: There Is More Than One Side to the COPD Story

This non-promotional AstraZeneca-sponsored symposium intended for healthcare professionals took place on 28th September 2025 as part of the European Respiratory Society (ERS) Congress held in Amsterdam, the Netherlands

Support: The ERS symposium was organised and funded by AstraZeneca. This article was commissioned and funded by AstraZeneca.

Chairperson: Claus Vogelmeier¹

Speakers: Andrew Menzies-Gow,² Rebecca D'Cruz,³ Dave Singh,^{4,5} Stephanie Christenson⁶

1. University Hospital Marburg, Germany
2. AstraZeneca, Cambridge, UK
3. Guy's and St Thomas' NHS Foundation Trust, London, UK
4. University of Manchester, UK
5. Medicines Evaluation Unit an IQVIA business, Manchester, UK
6. University of California, San Francisco, USA

Disclosure: Vogelmeier has given presentations and/or served on scientific advisory boards sponsored by AstraZeneca, Boehringer Ingelheim, Chiesi, GSK, Grifols, Insmed, Menarini, Novartis, Nuvaira, Aerogen, Sanofi, and Roche; and has unrestricted grants from AstraZeneca, Boehringer Ingelheim, GSK, Grifols, and Novartis. Menzies-Gow is an employee of AstraZeneca. D'Cruz has received grants/research support from Fisher & Paykel Healthcare and Philips Respironics; and honoraria from AstraZeneca, Aerogen, Fisher & Paykel Healthcare, and ResMed. Singh has received personal fees from Adevate, Aerogen, Almirall, Apogee, Arrowhead, AstraZeneca, Bial, Boehringer Ingelheim, Chiesi, Cipla, Connect Biopharma, Covis, CSL Behring, DevPro Biopharma, Elpen, Empirico, EpiEndo, Genentech, Generate:Biomedicines, GSK, Glenmark, Kamada, Kinaset Therapeutics, Kymera, Menarini, MicroA, OM Pharma, Orion, Pieris Pharmaceuticals (now merged with Palvelia Therapeutics), Pulmatrix, Revolo, Roivant Sciences, Sanofi, Synairgen, Tetherex, Teva, Theravance Biopharma, Upstream, and Verona Pharma. Christenson has received grant support from the NIH, American Lung Association, COPD Foundation, and Department of Defense; consulting and advisory board fees from AstraZeneca, Sanofi, Regeneron, GSK, Verona Pharma, Apogee Therapeutics, Amgen, DevPro Biopharma, Kymera Therapeutics, Genentech, and Uniquity Bio; non-branded speaking fees from AstraZeneca, GSK, Sanofi, Regeneron, Medscape, and Horizon CME; and writing fees from UpToDate.

Acknowledgements: Writing assistance was provided by Stevan Rakovic, Witney, UK.

Disclaimer: The opinions expressed in this article belong solely to the speakers. This article refers to investigational products that are not currently approved for the treatment of COPD in any country.

Keywords:	Biologics, biologic treatment, clinical development programme, COPD, IL-33, oxidised IL-33 (IL-33OX), reduced IL-33 (IL-33RED), unmet need.
Citation:	EMJ Respir. 2025;13[1]:49-58. https://doi.org/10.33590/emjrespir/RBJW7216

Meeting Summary

At a non-promotional AstraZeneca-sponsored symposium at the European Respiratory Society (ERS) 2025 Congress, five experts were invited to discuss the current unmet need for biologic therapy in COPD, explore the roles of IL-33 in COPD pathogenesis, and review newly developed biologics for COPD that target IL-33 pathways. Andrew Menzies-Gow, Vice President, Respiratory & Immunology, Global Biopharmaceuticals Medical, AstraZeneca, Cambridge, UK, highlighted barriers to effective COPD management and emphasised the need for proactive, integrated, patient-centred care. Rebecca D'Cruz, Pulmonologist, Guy's and St Thomas' NHS Foundation Trust, London, UK, explained why novel COPD therapies are required and addressed the role of mucus dysfunction in COPD progression. Dave Singh, Pulmonologist and Clinical Pharmacologist, University of Manchester and Medicines Evaluation Unit, UK, described how the reduced (IL-33RED) and oxidised (IL-33OX) forms of IL-33 act through distinct pathways to promote inflammation, mucus dysfunction, and impaired epithelial repair in COPD. Stephanie Christenson, Pulmonologist, University of California, San Francisco, USA, summarised aspects of clinical trials evaluating IL-33-targeted biologics for COPD. Finally, Claus Vogelmeier, Pulmonologist, University Hospital Marburg, Germany, chaired a panel discussion of how targeting distinct IL-33 pathways might change the future landscape of COPD.

Introduction

Adequate management of COPD is important because hospitalisation for an acute exacerbation of COPD (AECOPD) is associated with high rates of pooled 365-day hospital readmission (38.2%), in-hospital mortality (6.2%), and pooled 365-day post-discharge mortality (12.2%).¹ However, despite optimisation of maintenance treatment with combination inhalers, many patients continue to experience exacerbations,² highlighting an unmet need for additional treatments. Biologics targeting immune system components, including IL-33 signalling, have been developed as potential new COPD therapies.³

The main objectives of the symposium described in this article were to raise awareness of the current unmet need for

biologic therapy in COPD despite optimised standard-of-care treatment, explore the roles of IL-33RED and IL-33OX in COPD pathogenesis, and review new biologics for COPD that target IL-33 pathways.

Transforming Care in COPD

Andrew Menzies-Gow

Globally, around 468 million people lived with chronic respiratory diseases in 2021.⁴ Lung disease is a major driver of health inequalities.^{5,6} The number of deaths, disability-adjusted life years, and hospitalisations due to chronic respiratory diseases has increased during the past 3 decades.^{4,7,8} Healthcare systems have similar barriers to care for chronic respiratory diseases, including

delayed diagnosis and fragmented care pathways.^{9–11} As a result, many individuals with chronic lung diseases are undiagnosed or undertreated.^{12,13} The main stakeholders in healthcare delivery, including healthcare providers, pharmaceutical companies, professional societies, and patient advocacy groups, need to work together to provide proactive, integrated, patient-centred care for chronic respiratory diseases, as early diagnosis and initiation of guideline-directed medical therapy decreases the rates of AECOPD and hospital admissions, and may reduce the rate of premature deaths.

The Unmet Need for Novel Therapies in COPD

Rebecca D'Cruz

COPD affects millions of people worldwide, but many patients receive suboptimal therapy and continue to experience moderate-to-severe exacerbations.¹⁴ Exacerbations have profound effects on patients' disease progression,¹⁵ their physical and mental wellbeing,^{16,17} and their caregivers' lives.¹⁸

A retrospective USA cohort study (SIRIUS I) included 4,920 patients with COPD on triple therapy with a history of ≥ 2 moderate or ≥ 1 severe exacerbations per year.¹⁴ During the first year of follow-up, 69% of participants experienced ≥ 1 moderate and/or severe exacerbation, while 25% of patients experienced ≥ 1 severe exacerbation requiring hospitalisation for ≥ 2 days.¹⁹ These arresting statistics highlight COPD as a devastating disease with serious implications.

Approximately 90% of patients in the SIRIUS I study received an oral corticosteroid (OCS) during baseline for a mean cumulative duration of 73 days.¹⁴ OCS exposure is associated with significantly elevated risks of various adverse outcomes, including pneumonia (adjusted hazard ratio [aHR]: 2.90; 95% CI: 2.77–3.03 versus no exposure), osteoporosis (HR: 1.80; 95% CI: 1.70–1.92), Type 2 diabetes (HR: 1.44; 95% CI: 1.37–1.51), and cardiovascular/

cerebrovascular disease (HR: 1.26; 95% CI: 1.21–1.30).²⁰ Notably, relative all-cause mortality rates were 74% higher for patients exposed to cumulative OCS doses of 0.5– < 1.0 g (aHR: 1.74; 95% CI: 1.65–1.83) and 145% higher for patients exposed to cumulative OCS doses of 1.0– < 2.5 g (aHR: 2.45; 95% CI: 2.33–2.58), in comparison to those exposed to < 0.5 g of OCS.²⁰

D'Cruz emphasised that patients with COPD frequently die of cardiovascular disease, and the management of cardiopulmonary risk in patients with COPD remains suboptimal. An AECOPD increases the risks of subsequent exacerbations and cardiovascular events, both of which are associated with premature death.^{21,22} A retrospective UK cohort study of 213,466 patients with COPD concluded that there was an approximately two-fold increase in the risk of acute coronary syndrome (aHR: 2.07; 95% CI: 1.39–3.09) and nearly three-fold elevations in the risks of arrhythmia (aHR: 2.86; 95% CI: 2.36–3.47) and heart failure (aHR: 2.87; 95% CI: 2.36–3.50) during the first 14 days after a moderate/severe exacerbation.²³ Even a single moderate exacerbation may increase the risk of future exacerbations and is associated with a higher risk of premature mortality. In an observational analysis of 340,515 patients with COPD in the UK, one moderate exacerbation was associated with a 17% increase in the adjusted incidence rate ratio (aIRR) for COPD-related death (1.17; 95% CI: 1.04–1.33 versus no exacerbation) and a 23% higher aIRR for cardiovascular-related death (1.23; 95% CI: 1.07–1.42).²⁴ Notably, the risks were even greater after one severe exacerbation, with aIRR increases of 138% for COPD-related death (2.38; 95% CI: 2.08–2.73 versus no exacerbation) and 65% for cardiovascular-related death (1.65; 95% CI: 1.34–2.02).²⁴

Patients with COPD continuing to experience exacerbations on triple therapy have a severe and under-recognised disease burden. In an analysis of data (drawn from an international cross-sectional study) for 399 patients on triple therapy with productive cough and ≥ 2 moderate/ ≥ 1 severe exacerbations in the prior year,

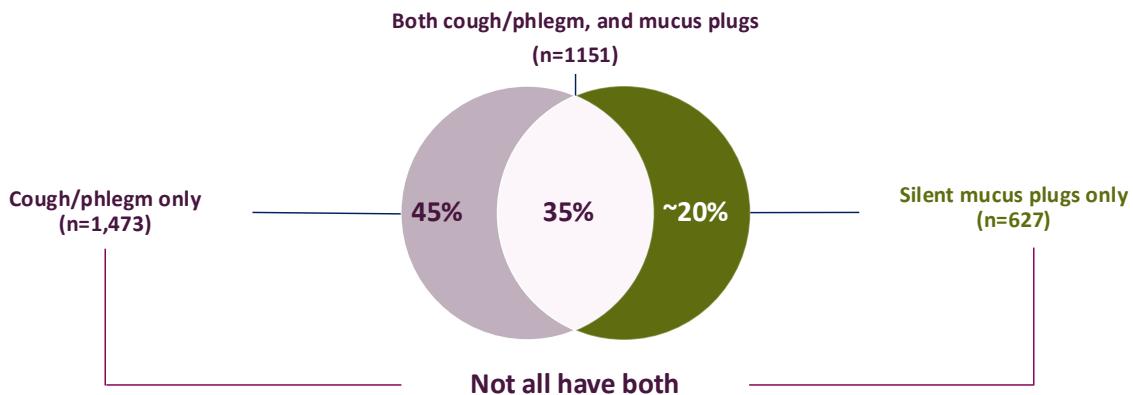
54% exhibited severe-to-very-severe airway obstruction, 78% had breathlessness with a Modified Medical Research Council (mMRC) Dyspnoea Scale score ≥ 2 , and 35% required O₂ therapy.^{25,26} Unfortunately, the devastating implications of COPD are under-recognised by clinicians: a recent survey revealed that 73% of physicians considered their patients' COPD to be somewhat/well/completely controlled, despite these patients exhibiting exacerbations on triple therapy.²⁶ This highlights an incongruence between patients' experiences and clinicians' perceptions.

The Role of Mucus Dysfunction in COPD Progression

Rebecca D'Cruz

Mucus dysfunction is central to COPD pathology and includes mucus hypersecretion and mucus plugging.²⁷⁻³¹ Mucus hypersecretion is associated with dysregulation of basal cell differentiation, mucin-5AC (MUC5AC) overproduction by bronchial epithelial goblet cells, impaired ciliary clearance, airway infection, and symptoms such as productive cough and dyspnoea.^{27,28} Viscous mucus plugs obstruct airways to increase airway resistance and drive hyperinflation, which raises the work of breathing and manifests as breathlessness.^{30,32,33} Mucus plugs in CT scans are associated with accelerated lung function decline,³⁴ an elevated risk of exacerbations,³⁴ and increased all-cause mortality.²⁹

The COPDGene study is an observational prospective cohort study that included analysis of 4,363 patients with COPD at 21 centres in the USA.³⁵ This analysis revealed that 74.5% of participants had signs of mucus dysfunction (cough, phlegm, and/or CT-detected mucus plugs).³⁵ Interestingly, only approximately 35% of patients with mucus dysfunction had cough and/or phlegm as well as mucus plugs. Approximately 45% of participants had cough and/or phlegm only (indicative of mucus hypersecretion), while approximately 20% of participants had silent mucus plugs without cough or phlegm


(Figure 1).³⁵ This suggests that although mucus dysfunction is common in patients with COPD, mucus hypersecretion and mucus plugs may be distinct, and there is a poor correlation between the two.

Productive cough and excess sputum are associated with numerous negative outcomes, including airflow limitation, exacerbations, dyspnoea, fatigue, physical activity limitation, depression, anxiety, and social isolation.³⁶⁻³⁹ Mucus plugs occlude the lumen of the airways.^{31,32,40} Furthermore, there is evidence that mucus plugs are more common in severe COPD: the prevalence of ≥ 1 mucus plug in CT images of 18 lung segments increased progressively from 22.1% in patients with mild COPD (Global Initiative for Chronic Pulmonary Obstructive Disease [GOLD] Stage I) to 63.1% in patients with very severe disease (GOLD Stage IV).^{29,41}

Although some patients with COPD exhibit resolution of mucus plugging, others have persistent plugs or develop new mucus plugs. In a subgroup of 2,118 patients with COPD in the COPDGene study, who were followed up for 5 years including CT and spirometry assessments, the annual mean decline in forced expiratory volume in 1 second was faster in participants with persistent (60.4 mL/year) or newly formed (54.9 mL/year) mucus plugs than in those with resolved mucus plugs (39.3 mL/year) or absent mucus plugs (reference group; 37.2 mL/year).⁴² There is evidence that mucus plugs are associated with elevated risks of AECOPD and death. For example, a retrospective observational study of 374 propensity-score-matched patients with COPD demonstrated that CT-detected mucus plugs significantly increased the risk of moderate-to-severe exacerbations by 50% (aHR: 1.50; 95% CI: 1.12–2.02) and the risk of severe exacerbations by 111% (aHR: 2.11; 95% CI: 1.43–3.10) versus no mucus plugs.³⁴ Furthermore, an observational retrospective analysis of COPDGene data found that the presence of mucus plugs was associated with significantly higher hazards of all-cause mortality: aHR 1.15 (95% CI: 1.02–1.29) for plugs in 1–2 lung segments and aHR 1.24 (95% CI: 1.10–1.41) for plugs in three or more segments versus none.²⁹

Figure 1: Mucus dysfunction is common in COPD, with a poor correlation between mucus hypersecretion and mucus plugs.

COPDGene study,* approximately 75% of patients had signs of mucus dysfunction.[†]
Of these patients:

*Based on data from 4,363 patients with COPD (current or former smokers) across the full spectrum of COPD severity. Patients were recruited from the COPDGene study, an observational prospective cohort study conducted across 21 centres in the USA, and included 45–80-year-old non-Hispanic White or non-Hispanic Black patients with COPD and with a ≥ 10 pack-year smoking history.^{29,35}

[†]Signs of mucus dysfunction included cough, phlegm, and/or mucus plugs.

Adapted from Mettler et al.,³⁵ licensed under CC BY 4.0 (<https://creativecommons.org/licenses/by/4.0/>).

Many patients with COPD continue to experience exacerbations on triple therapy, indicating an unmet need for novel therapies that target the broader mechanisms underlying COPD pathogenesis.⁴³⁻⁴⁶

The Distinct Pathways of IL-33 Driving COPD Pathogenesis

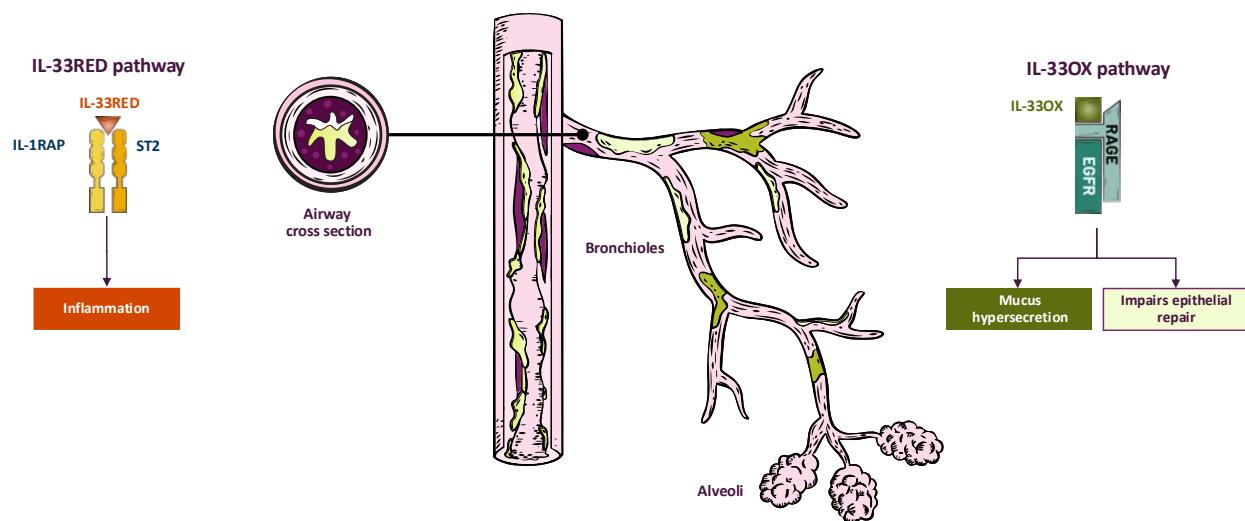
Dave Singh

IL-33-mediated signalling is a key pathway driving COPD pathogenesis. IL-33 is highly expressed in lung tissue homogenate from patients with severe COPD: IL-33 levels were significantly higher in patients with GOLD Stage III/IV COPD (forced expiratory volume in 1 second: <50% predicted) than in healthy controls ($p<0.001$).^{41,47} IL-33 levels correlate with an increased risk of future COPD exacerbations and prevalence of productive cough.^{48,49} In a prospective study of 62 patients with COPD in Korea followed for 1 year, participants in the highest

quartile of plasma IL-33 concentration had a significantly higher exacerbation rate than patients with lower IL-33 levels (1.00 ± 1.16 versus 0.40 ± 0.62 exacerbations/year; $p=0.01$).⁴⁸ Furthermore, a multicentre study of 307 people with COPD observed that productive cough (phlegm for ≥ 3 months/year) was significantly more prevalent in those with a plasma IL-33 concentration above the median than in those with lower levels (46.8% versus 32.7%; $p=0.016$).⁴⁹

IL-33 is found in two forms in the body: IL-33RED and IL-33OX. IL-33RED is stored in the nuclei of structural cells such as epithelial and endothelial cells, and is rapidly released upon tissue injury and cell damage induced by trauma, infections, pollutants, and allergens, for example.^{46,50,51} IL-33RED undergoes a conformational switch to IL-33OX upon exposure to the extracellular environment.⁵¹

IL-33RED binds to the serum-stimulated-2 (ST2) receptor on immune and endothelial cells, which recruits IL-1 receptor accessory


protein (IL-1RAP) to form a heterodimer that activates various inflammatory pathways, including Type 1 inflammation via cell types such as Th1 cells, Type 2 inflammation via cell types such as eosinophils, and Type 3 inflammation via cell types such as neutrophils and macrophages.^{45,50,52,53} IL-33 can also stimulate endothelial cells to release cytokines involved in Type 1 and Type 3 inflammation.^{54,55}

IL-33RED is a potent inflammatory cytokine, and multiple homeostatic mechanisms regulate its activity. Firstly, IL-33RED is retained in the nuclei of airway epithelial cells and is inactivated by caspase 3/7 during apoptosis to prevent initiation of an immune response.⁵⁶ Secondly, ST2 is found not only as a membrane-bound form but also as a soluble form (sST2) that acts as a 'decoy' receptor to dampen the immune response to IL-33RED.⁵⁶ sST2 acts as an endogenous regulator of inflammation, and it is thought that reduced sST2 levels may cause an imbalance between IL-33RED and sST2 that promotes uncontrolled inflammation.⁵⁷⁻⁵⁹ Thirdly, the conformational switch that occurs on oxidation of IL-33RED to IL-33OX prevents it from binding to membrane-bound ST2 receptors.^{46,51}

In vitro experiments have shown that IL-33OX signals via the receptor for advanced glycation end-products (RAGE)/epidermal growth factor receptor (EGFR) and is involved in mucus hypersecretion and airway remodelling.⁴⁶ Experiments using human bronchial epithelial cells cultured in an air-liquid interface revealed that goblet cell MUC5AC/B expression was upregulated by IL-33OX, inducing a human epithelial mucin hypersecretion phenotype similar to that observed in COPD.⁴⁶ MUC5AC secretion was also increased by IL-33OX but not by an oxidation-resistant form of IL-33RED ($p \leq 0.01$).⁴⁶ The effects of IL-33OX and IL-33RED were also evaluated in a model of airway epithelial wound healing, which measured the extent of wound closure 24 hours after a scratch injury to cultured primary human bronchial epithelial cells. IL-33OX, but not IL-33RED, inhibited wound closure, indicating that IL-33OX impairs epithelial repair mechanisms.⁴⁶

IL-33 dysregulation is a key driver of COPD pathogenesis, with IL-33RED-mediated pathways causing inflammation, and IL-33OX-mediated signalling leading to mucus hypersecretion and impaired epithelial repair (Figure 2).^{44,46,50}

Figure 2: IL-33 dysregulation is a key driver of inflammation and mucus dysfunction in COPD.^{44,46,50,60}

EGFR: epidermal growth factor receptor; IL-33OX: oxidised IL-33; IL-1RAP: IL-1 receptor accessory protein; IL-33RED: reduced IL-33; RAGE: receptor for advanced glycation end-products; ST2: serum-stimulated-2.

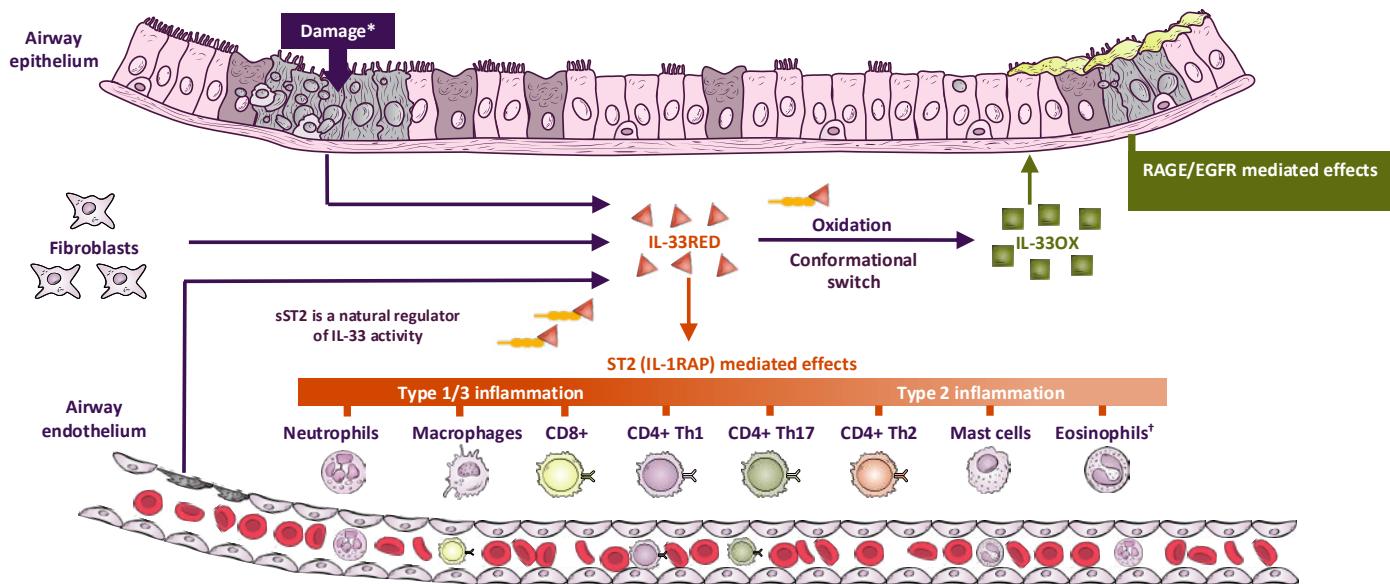
Smoking status has complex effects on IL-33 signalling. A recent study reported significantly higher sputum IL-33 levels for 80 people with COPD than for 20 healthy controls (median [interquartile range]: 38.7 [16–80] versus 14.1 [8–37] pg/mL; $p<0.05$).⁶¹ Interestingly, among patients with COPD, active smokers had significantly lower sputum IL-33 concentrations than former smokers (median [interquartile range]: 23 [11–53] versus 64 [32–108] pg/mL; $p=0.002$).⁶¹ Nonetheless, patients with severe COPD (GOLD Stage III/IV) had higher airway IL-33 levels compared to healthy controls, irrespective of their smoking status.⁶¹

An analysis of the association between smoking status and IL-33 gene expression across eight different studies also provided evidence of lower IL-33 gene expression in current smokers with COPD than in former smokers with COPD.⁶² However, there also appeared to be a trend toward lower ST2 gene expression in active smokers than in former smokers.⁶² The impact of this interplay between IL-33 and ST2 gene expression levels needs further elucidation, particularly given that ST2 is expressed not only as a membrane-bound receptor that mediates IL-33 signalling but also as a soluble protein that can lower the activity of this pathway. Notably, further analyses of gene set variation in bronchial epithelial air-liquid interface cultures have indicated that IL-33OX signalling is higher in patients with COPD than in healthy controls, and higher in current smokers than in former smokers, irrespective of COPD status.⁴⁶ These data raise the possibility that active smoking may be associated with enhanced activation of IL-33OX signalling relative to former smokers.

Given its role as a key orchestrator of the inflammatory cascade (Figure 3), IL-33 is a strategic therapeutic target for COPD.^{45,46,50,51,63,64} Several novel biologics have been developed that inhibit IL-33 activity with differing mechanisms of action. Phase II and Phase III studies of these biologics are either completed or ongoing, and the results of these studies will provide important insights into the potential of these agents as novel COPD therapies.

Exploring Clinical Development of IL-33-Targeted Biologics

Stephanie Christenson


Phase II and Phase III clinical trials have been undertaken to evaluate the different types of biologics targeting IL-33 pathways in the management of COPD.^{67–83} Christenson began by summarising the clinical development programmes for the three types of biologics described above by Singh. They went on to present data from some of the Phase II studies that have been published.^{67,68,72,77,82,83} Although the primary endpoint was not met in the Phase II clinical trials for these biologics, important signals of clinical efficacy were observed, supporting the initiation of large Phase IIb/III programmes. The results of these Phase IIb/III studies have yet to be fully published, so Christenson focused on describing the important features of the design of each of these clinical trials.^{69,70,73,74,78–80} The results from the Phase IIb/III studies will help to better understand these molecules and elucidate the impact of their different mechanisms of action.

Panel Discussion

D'Cruz described the importance of treating both inflammation and mucus dysfunction in COPD. Although therapies are available to break down mucus and promote its expectoration, pharmacological interventions inhibiting mucus overproduction are lacking. Given the adverse effects of long-term OCS use,²⁰ D'Cruz was of the opinion that new treatments are needed to reduce the risk of further exacerbations and steroid exposure in patients with COPD who exhibit exacerbations on triple therapy.

Singh discussed the COPDGene study³⁵ and the fact that mucus plugs are associated with higher exacerbation and mortality rates.^{29,34} Establishing whether interventions that reduce mucus plugging improve outcomes was highlighted as important. Additionally, Singh addressed

Figure 3: IL-33 is a key orchestrator of the inflammatory cascade in COPD and a strategic therapeutic target.^{45,46,50,51,63-66}

*Damage induced by smoke, pollutants, and viral or bacterial exposure.

†Eosinophils are elevated in 10–40% of patients with COPD.⁴⁵

CD4+/8+: cluster of differentiation 4/8-positive; EGFR: epidermal growth factor receptor; IL-33OX: oxidised IL-33; IL-1RAP: IL-1 receptor accessory protein; IL-33RED: reduced IL-33; RAGE: receptor for advanced glycation end-products; sST2: soluble serum-stimulated-2; ST2: serum-stimulated-2; Th1/2/17: T helper 1/2/17 cell.

potential biomarkers for responders to anti-IL-33 therapy, highlighting exacerbation frequency as a disease severity measure that might help identify patients requiring more aggressive therapy.

Christenson explained that IL-33 is a good therapeutic target for COPD because it is involved in driving heterogeneous types of inflammation as well as mucus dysfunction, all of which are relevant to COPD. Discovering whether differences in mechanisms between biologics are reflected by differences in clinical trial outcomes will be enlightening. Christenson also stressed the importance of acquiring data for both current and former smokers in clinical trials.

Conclusion

Vogelmeier emphasised the unmet need for novel treatments targeting the mechanisms underlying COPD, including inflammation and mucus dysfunction. IL-33 is a potential therapeutic target for COPD because it promotes all these pathogenetic mechanisms through IL-33RED and IL-33OX. Novel biologics inhibiting the IL-33 pathway have differing mechanisms of action, and it will be interesting to establish whether these differences are reflected in the outcomes of Phase III trials.

References

1. Waeijen-Smit K et al. Global mortality and readmission rates following COPD exacerbation-related hospitalisation: a meta-analysis of 65 945 individual patients. *ERJ Open Res.* 2024;10(1):00838-2023.
2. Sansbury LB et al. Disease burden and healthcare utilization among patients with chronic obstructive pulmonary disease (COPD) in England. *Int J Chron Obstruct Pulmon Dis.* 2022;17:415-26.
3. Kersul AL, Cosio BG. Biologics in COPD. *Open Respir Arch.* 2024;6(2):100306.
4. Cao Z et al. Burden of chronic respiratory diseases and their attributable risk factors in 204 countries and territories, 1990-2021: results from the global burden of disease study 2021. *Chin Med J Pulm Crit Care Med.* 2025;3(2):100-10.

5. Public Health England. Respiratory disease: applying all our health. 2022. Available at: <https://www.gov.uk/government/publications/respiratory-disease-applying-all-our-health/respiratory-disease-applying-all-our-health>. Last accessed: 24 October 2025.

6. World Health Organization (WHO). Chronic respiratory diseases in the WHO region. 2025. Available at: <https://www.who.int/europe/publications/item/WHO-EURO-2025-12340-52112-79990>. Last accessed: 24 October 2025.

7. Al Rajeh AM. Trend of admissions due to chronic lower respiratory diseases: an ecological study. *Healthcare (Basel)*. 2023;11(1):65.

8. Dairi MS. Hospitalization pattern for chronic lower respiratory diseases in Australia: a retrospective ecological study. *Cureus*. 2022;14(12):e33162.

9. Kiley J, Gibbons G. Developing a research agenda for primary prevention of chronic lung diseases—an NHLBI perspective. *Am J Respir Crit Care Med*. 2014;189(7):762-3.

10. Kostikas K et al. Clinical impact and healthcare resource utilization associated with early versus late COPD diagnosis in patients from UK CPRD database. *Int J Chron Obstruct Pulmon Dis*. 2020;15:1729-38.

11. Young KC et al. Care fragmentation is associated with increased chronic obstructive pulmonary disease exacerbations in a U.S. urban care setting. *Am J Respir Crit Care Med*. 2022;206(8):1044-7.

12. Diab N et al. Underdiagnosis and overdiagnosis of chronic obstructive pulmonary disease. *Am J Respir Crit Care Med*. 2018;198(9):1130-9.

13. Foda HD et al. Inverse relationship between nonadherence to original GOLD treatment guidelines and exacerbations of COPD. *Int J Chron Obstruct Pulmon Dis*. 2017;12:209-14.

14. Nordon C et al. Characteristics and outcomes of people with COPD who experience exacerbations while on inhaled triple therapy: results of the SIRIUS I cohort study in the US (2015-2019). *Int J Chron Obstruct Pulmon Dis*. 2025;20:1851-64.

15. Suissa S et al. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. *Thorax*. 2012;67(11):957-63.

16. Machado A et al. Giving voice to people – experiences during mild to moderate acute exacerbations of COPD. *Chronic Obstr Pulm Dis*. 2022;9(3):336-48.

17. Hurst JR et al. Understanding the impact of chronic obstructive pulmonary disease exacerbations on patient health and quality of life. *Eur J Intern Med*. 2020;73:1-6.

18. Suresh M et al. Caregiver experiences and roles in care seeking during COPD exacerbations: a qualitative study. *Ann Behav Med*. 2022;56(3):257-69.

19. Nordon C et al. Exacerbation and mortality in COPD patients on triple inhaler and at high exacerbation risk. *Eur Resp J*. 2024;64(Suppl 68):PA1287.

20. Tse G et al. A long-term study of adverse outcomes associated with oral corticosteroid use in COPD. *Int J Chron Obstruct Pulmon Dis*. 2023;18:2565-80.

21. Daniels K et al. Risk of death and cardiovascular events following an exacerbation of COPD: the EXACOS-CV US study. *Int J Chron Obstruct Pulmon Dis*. 2024;19:225-41.

22. Singh D et al. Implications of cardiopulmonary risk for the management of COPD: a narrative review. *Adv Ther*. 2024;41(6):2151-67.

23. Graul EL et al. Temporal risk of nonfatal cardiovascular events after chronic obstructive pulmonary disease exacerbation: a population-based study. *Am J Respir Crit Care Med*. 2024;209(8):960-72.

24. Whittaker H et al. Frequency and severity of exacerbations of COPD associated with future risk of exacerbations and mortality: a UK routine health care data study. *Int J Chron Obstruct Pulmon Dis*. 2022;17:427-37.

25. Janssens W et al. Characteristics of exacerbating COPD patients with productive cough and on inhaled triple therapy, by smoking status: a real-world multi-country study. *Eur Respir J*. 2024;64(Suppl 68):PA1288.

26. De Soya A et al. Perception of COPD control by physicians managing symptomatic exacerbating patients receiving inhaled triple therapy: a real-world multi-country 2022 survey. *Eur Resp J*. 2024;64(Suppl 68):PA1289.

27. Raby KL et al. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. *Front Immunol*. 2023;14:1201658.

28. Kotlyarov S. Involvement of the innate immune system in the pathogenesis of chronic obstructive pulmonary disease. *Int J Mol Sci*. 2022;23(2):985.

29. Diaz AA et al. Airway-occluding mucus plugs and mortality in patients with chronic obstructive pulmonary disease. *JAMA*. 2023;329(21):1832-9.

30. Fahy JV, Dickey BF. Airway mucus function and dysfunction. *N Engl J Med*. 2010;363(23):2233-47.

31. van der Veer T et al. Association between automatic AI-based quantification of airway-occlusive mucus plugs and all-cause mortality in patients with COPD. *Thorax*. 2025;80(2):105-8.

32. Okajima Y et al. Luminal plugging on chest CT scan: association with lung function, quality of life, and COPD clinical phenotypes. *Chest*. 2020;158(1):121-30.

33. Gagnon P et al. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease. *Int J Chron Obstruct Pulmon Dis*. 2014;9:187-201.

34. Jin KN et al. Mucus plugs as precursors to exacerbation and lung function decline in COPD patients. *Arch Bronconeumol*. 2025;61(3):138-46.

35. Mettler SK et al. Silent airway mucus plugs in COPD and clinical implications. *Chest*. 2024;166(5):1010-9.

36. Stott-Miller M et al. Defining chronic mucus hypersecretion using the CAT in the SPIROMICS cohort. *Int J Chron Obstruct Pulmon Dis*. 2020;15:2467-76.

37. Hughes R et al.; NOVELTY study investigators. Frequent productive cough: symptom burden and future exacerbation risk among patients with asthma and/or COPD in the NOVELTY study. *Respir Med*. 2022;200:106921.

38. Choate R et al. The burden of cough and phlegm in people with COPD: a COPD patient-powered research network study. *Chronic Obstr Pulm Dis*. 2020;7(1):49-59.

39. Cook N et al. Impact of cough and mucus on COPD patients: primary insights from an exploratory study with an online patient community. *Int J Chron Obstruct Pulmon Dis*. 2019;14:1365-76.

40. Dunican EM et al. Mucus plugs and emphysema in the pathophysiology of airflow obstruction and hypoxemia in smokers. *Am J Respir Crit Care Med*. 2021;203(8):957-68.

41. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for prevention, diagnosis and management of COPD: 2025 report. 2025. Available at: <https://goldcopd.org/2025-gold-report/>. Last accessed: 24 October 2025.

42. Mettler SK et al.; COPDGene Investigators; COPDGene site investigators. Longitudinal changes in airway mucus plugs and FEV1 in COPD. *N Engl J Med*. 2025;392(19):1973-5.

43. Wang Y et al. Role of inflammatory cells in airway remodeling in COPD. *Int J Chron Obstruct Pulmon Dis*. 2018;13:3341-8.

44. Tian PW, Wen FQ. Clinical significance of airway mucus hypersecretion in chronic obstructive pulmonary disease. *J Transl Int Med*. 2015;3(3):89-92.

45. Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. *Eur Respir J*. 2019;54(2):1900651.

46. Strickson S et al. Oxidised IL-33 drives COPD epithelial pathogenesis via ST2-independent RAGE/EGFR signalling complex. *Eur Respir J*. 2023;62(3):2202210.

47. Kearley J et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. *Immunity*. 2015;42(3):566-79.

48. Joo H et al. Association between plasma interleukin-33 level and acute exacerbation of chronic obstructive pulmonary disease. *BMC Pulm Med*. 2021;21(1):86.

49. Kim SW et al. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease. *Int J Chron Obstruct Pulmon Dis*. 2017;12:395-402.

50. Calderon AA et al. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. *Eur Respir Rev*. 2023;32(167):220144.

51. Cohen ES et al. Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. *Nat Commun*. 2015;6:8327.

52. Rabe KF et al. Targeting type 2 inflammation and epithelial alarmins in chronic obstructive pulmonary disease: a biologics outlook. *Am J Respir Crit Care Med*. 2023;208(4):395-405.

53. Keddache S et al. Inflammatory and immunological profile in COPD secondary to organic dust exposure. *Clin Immunol*. 2021;229:108798.

54. Aoki S et al. ST2 gene expression is proliferation-dependent and its ligand, IL-33, induces inflammatory reaction in endothelial cells. *Mol Cell Biochem*. 2010;335(1-2):75-81.

55. Gajewski A et al. IL-33 augments the effect of rhinovirus HRV16 on inflammatory activity of human lung vascular endothelium—possible implications for rhinoviral asthma exacerbations. *Allergy*. 2021;76(7):2282-5.

56. Liew FY et al. Interleukin-33 in health and disease. *Nat Rev Immunol*. 2016;16(11):676-89.

57. Alhallak K et al. Mast cells control lung type 2 inflammation via prostaglandin E2-driven soluble ST2. *Immunity*. 2024;57(6):1274-88.e6.

58. Zhao J, Zhao Y. Interleukin-33 and its receptor in pulmonary inflammatory diseases. *Crit Rev Immunol*. 2015;35(6):451-61.

59. Hayakawa H et al. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. *J Biol Chem*. 2007;282(36):26369-80.

60. MacNee W. Pathology, pathogenesis, and pathophysiology. *BMJ*. 2006;332(7551):1202-4.

61. Abdo M et al. Association of airway inflammation and smoking status with IL-33 level in sputum of patients with asthma or COPD. *Eur Respir J*. 2024;64(3):2400347.

62. Faiz A et al. IL-33 expression is lower in current smokers at both transcriptomic and protein levels. *Am J Respir Crit Care Med*. 2023;208(10):1075-87.

63. Wechsler ME, Wells JM. What every clinician should know about inflammation in COPD. *ERJ Open Res*. 2024;10(5):00177-2024.

64. Zhou Y et al. Role of IL-33-ST2 pathway in regulating inflammation: current evidence and future perspectives. *J Transl Med*. 2023;21(1):902.

65. Marcuccio G et al. Endothelial dysfunction in chronic obstructive pulmonary disease: an update on mechanisms, assessment tools and treatment strategies. *Front Med (Lausanne)*. 2025;12:1550716.

66. Gabryelska A et al. IL-33 mediated inflammation in chronic respiratory diseases—understanding the role of the member of IL-1 superfamily. *Front Immunol*. 2019;10:692.

67. Yousuf AJ et al. Astegolimab, an anti-ST2, in chronic obstructive pulmonary disease (COPD-ST2OP): a phase 2a, placebo-controlled trial. *Lancet Respir Med*. 2022;10(5):469-77.

68. University of Leicester. Anti-ST2 (MSTT1041A) in COPD (COPD-ST2OP). NCT03615040. <https://clinicaltrials.gov/study/NCT03615040>.

69. Genentech, Inc. A study to evaluate the efficacy and safety of astegolimab in participants with chronic obstructive pulmonary disease. NCT05037929. <https://clinicaltrials.gov/study/NCT05037929>.

70. Hoffmann-La Roche. A study to evaluate astegolimab in participants with chronic obstructive pulmonary disease (ARNASA). NCT05595642. <https://clinicaltrials.gov/study/NCT05595642>.

71. Hoffmann-La Roche. A study to evaluate the long-term safety of astegolimab in participants with chronic obstructive pulmonary disease (COPD). NCT05878769. <https://clinicaltrials.gov/study/NCT05878769>.

72. Sanofi. Proof-of-concept study to assess the efficacy, safety and tolerability of SAR440340 (anti-IL-33 mAb) in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). NCT03546907. <https://clinicaltrials.gov/study/NCT03546907>.

73. Sanofi. Study to assess the efficacy, safety, and tolerability of SAR440340/REGN3500/itepekimab in chronic obstructive pulmonary disease (COPD) (AERIFY-1). NCT04701983. <https://clinicaltrials.gov/study/NCT04701983>.

74. Sanofi. Study to assess the efficacy, safety, and tolerability of SAR440340/REGN3500/itepekimab in chronic obstructive pulmonary disease (COPD) (AERIFY-2). NCT04751487. <https://clinicaltrials.gov/study/NCT04751487>.

75. Sanofi. Mechanistic study of the effect of itepekimab on airway inflammation in patients with COPD (AERIFY-3). NCT05326412. <https://clinicaltrials.gov/study/NCT05326412>.

76. Sanofi. A study to investigate long-term safety and tolerability of itepekimab in participants with COPD (AERIFY-4). NCT06208306. <https://clinicaltrials.gov/study/NCT06208306>.

77. AstraZeneca. A phase II, randomized, double-blind, placebo-controlled study to assess MEDI3506 in participants with COPD and chronic bronchitis (FRONTIER-4). NCT04631016. <https://clinicaltrials.gov/study/NCT04631016>.

78. AstraZeneca. Efficacy and safety of tozorakimab in symptomatic chronic obstructive pulmonary disease with a history of exacerbations (OBERON). NCT05166889. <https://clinicaltrials.gov/study/NCT05166889>.

79. AstraZeneca. Efficacy and safety of tozorakimab in symptomatic chronic obstructive pulmonary disease with a history of exacerbations. (TITANIA). NCT05158387. <https://clinicaltrials.gov/study/NCT05158387>.

80. AstraZeneca. Efficacy and safety of tozorakimab in symptomatic chronic obstructive pulmonary disease with a history of exacerbations (MIRANDA). NCT06040086. <https://clinicaltrials.gov/study/NCT06040086>.

81. AstraZeneca. Long-term efficacy and safety of tozorakimab in participants with chronic obstructive pulmonary disease with a history of exacerbations (PROSPERO). NCT05742802. <https://clinicaltrials.gov/study/NCT05742802>.

82. Rabe KF et al. Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: a genetic association study and randomised, double-blind, phase 2a trial. *Lancet Respir Med*. 2021;9(11):1288-98.

83. Singh D et al. A phase 2a trial of the IL-33 monoclonal antibody tozorakimab in patients with COPD: FRONTIER-4. *Eur Respir J*. 2025;66(1):2402231.

Z4-77844 / November 2025

FOR REPRINT QUERIES PLEASE CONTACT: INFO@EMJREVIEWS.COM