

The New Frontiers of Personalised Cancer Prevention

Author: Katie Wright, EMJ, London, UK

Citation: EMJ Oncol. 2025;13[1]:31-35.
<https://doi.org/10.33590/emjoncol/DZRT1764>

THIS YEAR, the highly anticipated European Society for Medical Oncology (ESMO) Congress 2025 was held in Berlin, Germany, from 17th–21st October 2025. The Sunday afternoon session, entitled 'The state-of-the-art of personalised prevention', brought together leading international experts to explore emerging strategies for reducing cancer risk and improving early detection across multiple cancer types.¹ Chaired by Harry de Koning, Erasmus MC University Medical Centre, Rotterdam, the Netherlands; and Suzette Delaloge, Gustave Roussy, Villejuif, France, the session featured a series of presentations on cutting-edge approaches in cancer prevention. Together, the speakers outlined the current landscape of personalised cancer prevention and the steps needed to translate research into equitable, effective clinical practice.

LUNG CANCER

Translating Screening Evidence into Public Health

To begin the session, de Koning took the stage to explore the transformative role of low-dose CT in shifting lung cancer diagnosis towards earlier, more treatable stages. Drawing on comparative registry data from the Netherlands, he demonstrated the dramatic redistribution of stage at diagnosis that accompanies the implementation of structured CT screening. In the general population, approximately 50% of lung cancers are detected at Stage IV and only 7% at Stage IA. Under CT screening conditions, this profile reverses, with 50% detected at Stage IA and only 10% at Stage IV. This "stage shift," de Koning explained, represents the fundamental advantage of CT-based detection over symptom-driven diagnosis or older imaging methods such as chest radiography.

He highlighted key clinical evidence establishing this principle: the National Lung Screening Trial (NLST)² in the USA and the European NELSON trial.³ Both large-scale

RCTs demonstrated a significant reduction in lung cancer-specific mortality with low-dose CT screening compared to chest X-ray or no screening. Importantly, the NELSON trial achieved even greater mortality reduction, with hazard ratios of 0.76 in males and 0.41 in females after 8 years.

Refining Eligibility and Outcomes

de Koning then presented recently published analyses exploring why NELSON achieved superior outcomes compared to NLST.⁴ The findings indicate that histology-specific mortality reductions were a key differentiator: in the NELSON cohort, CT screening significantly reduced mortality from squamous cell carcinoma, a benefit not observed in the NLST trial. This histological insight may explain the European advantage, though de Koning cautioned that further validation is needed.

The same study also examined risk stratification by smoking intensity and cessation status. Contrary to traditional assumptions, individuals with lower cumulative tobacco exposure (<30 pack-years) and former smokers (those who quit

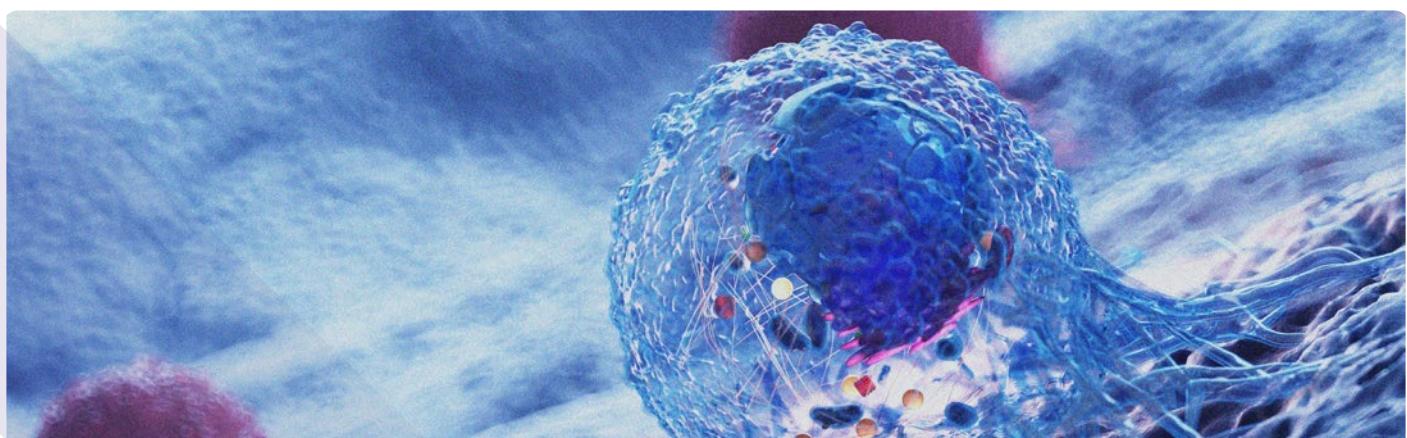
≥5 years prior) appeared to benefit equally or even more from screening compared with heavy current smokers. This suggests a broader potential eligibility range for national screening programmes beyond only high-intensity smokers.

Focusing on national projections, de Koning discussed modelling from the Netherlands, estimating the impact of biannual CT screening in high-risk groups.⁵ Simulations indicate that introducing screening in 2022 could yield an 18% reduction in national lung cancer mortality, representing thousands of prevented deaths over time.

Further analyses demonstrated that early detection directly translates to a survival advantage. In a stage-specific comparison of mortality prevention probabilities,⁶ early-stage detection (IA–IB) corresponded to an 80% reduction in disease-specific mortality. However, de Koning acknowledged the inevitable trade-off between lives saved and overdiagnosis: based on earlier modelling,⁷ approximately 500 deaths are prevented per 100,000 screened individuals, alongside 200 cases of overdiagnosis and overtreatment, a balance considered acceptable given the magnitude of benefit.

From Evidence to Implementation

Turning to implementation, de Koning reviewed the European Council's 2022 recommendations expanding cancer screening programmes to include lung, prostate, and gastric cancers. Several countries, including Croatia, Czechia, Poland, Italy, Hungary, and the Netherlands, have now initiated pilots or national


programmes. The UK, he noted, is a frontrunner with its large-scale Targeted Lung Health Check initiative, having issued 1.8 million invitations and conducted 360,000 scans to date, yielding a 1.3% cancer detection rate with 62% of cases found at Stage I. Encouragingly, preliminary analyses show a 22% reduction in late-stage disease, with evidence that screening may narrow socioeconomic disparities, as early-stage detection rates are now higher among the most deprived populations.

Finally, de Koning introduced ongoing and future studies designed to refine screening intervals and population selection, including the 4-IN-THE-LUNG-RUN trial, the SOLACE project (focusing on women and underserved groups), and LAPIN, which aims to evaluate both tobacco and non-tobacco risk factors such as radon exposure. He concluded by emphasising the synergistic role of improved treatment and screening in enhancing survival, referencing recent Dutch data showing marked mortality improvements linked to modern therapies.⁸

BREAST CANCER

Limitations of Standard Screening

Delaloge began her presentation by outlining the rationale and emerging direction for personalised prevention in breast cancer, emphasising that rising incidence, widening health inequalities, and the limitations of standard screening programmes necessitate a shift in strategy. She noted that global breast cancer incidence has doubled over the

last 30 years, with French epidemiological analyses showing that, while demographic changes account for part of this increase, approximately 50% is attributable to modifiable risk factors linked to lifestyle and environmental exposures. As a result, prevention and screening approaches developed in the 1990s are no longer sufficient, especially given the substantial financial and treatment burden associated with later-stage diagnoses.

Delaloge illustrated the treatment implications of stage at diagnosis, showing that women diagnosed at Stage I require significantly less systemic therapy compared with those at Stages II or III, where extended endocrine therapy, immunotherapies, and targeted agents are increasingly used. The clinical and economic burden of treating later-stage disease, therefore, reinforces the importance of early detection. She highlighted data from France demonstrating that participation in organised screening programmes is associated with lower excess mortality, and importantly, that organised screening reduces the impact of social deprivation on outcomes.⁹ However, participation in standard mammography screening programmes is declining, particularly among younger women and socioeconomically disadvantaged groups, presenting a pressing public health challenge.

The Multi-Factorial Framework of Risk Assessment

To address these limitations, Delaloge presented the emerging framework of personalised or 'interception' prevention, which combines risk assessment, risk reduction, and tailored early detection.

Germline genetics remains a cornerstone of identifying high-risk groups. Evidence-based strategies for carriers of *BRCA1/2* and other high-penetrance genes include MRI from the age of 30 years and, where appropriate, risk-reducing interventions.^{10,11} However, Delaloge emphasised growing attention to polygenic risk scores (PRS), where the cumulative effects of single-nucleotide polymorphisms can markedly refine risk stratification.

Two validated approaches for risk assessment in the general population were highlighted: the integration of PRS with clinical and hormonal risk factors, and AI-based image-derived risk modelling, the latter now being evaluated prospectively in the SMART trial.^{12,13}

Tailored Strategies: Trials and Interventions

The implementation of risk-based screening is currently being tested in major randomised trials. Delaloge highlighted the MyPeBS trial in Europe, which she leads, and the WISDOM trial in the USA.^{14,15} These studies compare standard age-based screening to risk-adjusted intervals informed by PRS, breast density, and clinical factors. Results, expected in 2027, will determine whether personalised screening reduces rates of Stage II+ disease, while maintaining safety, feasibility, and acceptability.

Delaloge then reviewed risk-reduction strategies, including risk-reducing mastectomy, which may be cost-effective for women aged 30–55 years with a $\geq 35\%$ lifetime risk;¹⁶ endocrine prevention using tamoxifen or aromatase inhibitors; and lifestyle interventions, noting evidence that lifestyle modification can produce mortality reductions comparable to some pharmacological approaches.¹⁷

She concluded by emphasising the need to integrate prevention and screening, address social inequities, and establish sustainable care pathways to support long-term implementation. Personalised prevention, Delaloge argued, represents not only a scientific evolution but a necessary public health transition.

COLORECTAL CANCER

Aspirin Chemoprevention

Andrew Chen, Massachusetts General Hospital, Boston, USA, presented on the emerging strategies for personalised prevention of gastrointestinal and colorectal cancer. He began by emphasising the critical role of colorectal cancer (CRC)

Personalised prevention represents not only a scientific evolution but a necessary public health transition

screening while advocating for more individualised approaches to primary prevention, particularly through the use of aspirin.

Chen outlined two main areas: precision prevention using age-based screening and molecularly guided aspirin therapy for localised CRC. Multiple case-control and cohort studies demonstrate consistent reductions in CRC incidence among aspirin users across diverse populations, supported by five RCTs showing lower recurrence of adenomas or CRC in high-risk individuals. Furthermore, over 50 cardiovascular prevention trials with linked CRC outcomes consistently showed reduced CRC incidence and mortality in aspirin users.¹⁸

The CAPP2 trial in patients with Lynch syndrome demonstrated a long-term reduction in CRC risk with aspirin.¹⁹ These findings informed the 2016 US Preventive Services Task Force (USPSTF) recommendation supporting low-dose aspirin in adults aged 50–59 years with $\geq 10\%$ 10-year cardiovascular risk, marking a milestone in cancer prevention via medication.²⁰ However, in 2022, the USPSTF reversed this recommendation, citing insufficient evidence for CRC prevention, largely due to the ASPREE trial, which randomised 19,114 adults aged ≥ 70 years (or ≥ 65 for USA minorities) to 100 mg aspirin versus placebo over 4.7 years. ASPREE found increased cancer mortality (hazard ratio: 1.31) in the aspirin arm, without differences in overall cancer incidence.²¹ Further analysis revealed that

the excess mortality was driven by higher incidence of Stage IV cancers.²²

These findings contrast with prior trials, highlighting the importance of age and duration in aspirin prevention. Epidemiologic studies, including the Nurses' Health Study and Health Professionals Follow-Up Study, indicate that initiating aspirin before the age of 70 years, particularly between 15–69 years, reduces CRC incidence by approximately 25%, whereas starting after 70 years of age offers no benefit.²³ Similarly, the Japan Prevention of Atherosclerosis in Diabetes trial confirmed that aspirin's protective effect is limited in older adults.²⁴ Lifestyle factors also influence benefit: a CRC risk score based on five lifestyle factors predicts that individuals with poorer lifestyles experience the greatest absolute benefit from aspirin.^{25,26}

Molecular-Guided Therapy

Molecularly-guided aspirin therapy is an exciting precision prevention approach. Chen's group showed that adjuvant aspirin reduced CRC-specific mortality in patients with activating *PIK3CA* mutations, whereas wild-type tumours did not benefit.²⁷ These findings were validated in the ALASCCA trial²⁶ and supported by the SAC study in Switzerland, which, despite limited enrolment, suggested similar trends in PI3K pathway-altered cancers.^{28,29} Mechanistically, aspirin may enhance antitumour immunity by blocking thromboxane A2 and prostaglandin

Molecularly-guided aspirin therapy is an exciting precision prevention approach

signalling, rejuvenating exhausted T cells to eradicate PI3K-mutant tumour cells.³⁰

While aspirin use represents a model for personalised CRC prevention, age of initiation, lifestyle, and tumour molecular profile (especially *PIK3CA* mutations) are critical determinants of possible benefit. Routine aspirin use is justified

for patients with Lynch syndrome, with emerging evidence supporting its use in adjuvant therapy for localised CRC with PI3K alterations. These findings highlight a paradigm shift toward inexpensive, low-cost, and personalised strategies to prevent and treat one of the most significant global cancers.

References

1. de Koning et al. The state-of-the-art of personalised prevention. ESMO Congress, 17-21 October, 2025.
2. National Lung Screening Trial Research Team et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. *N Engl J Med.* 2011;365(5):395-409.
3. de Koning HJ et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. *N Engl J Med.* 2020;382(6):503-13.
4. Welz M et al. A comparative analysis of heterogeneity in lung cancer screening effectiveness in two randomised controlled trials. *Nat Commun.* 2025;16(1):8060.
5. de Nijs K et al. Projected effectiveness of lung cancer screening and concurrent smoking cessation support in the Netherlands. *eClinicalMedicine.* 2024;71:102570.
6. de Nijs K et al. Stage- and histology-specific sensitivity for the detection of lung cancer of the NELSON screening protocol—a modeling study. *Int J Cancer.* 2025;157(11):2248-58.
7. de Koning HJ et al. Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. Preventive Services Task Force. *Ann Intern Med.* 2014;160(5):311-20.
8. de Nijs K et al. Influence of changing patterns in lung cancer treatment and survival on the cost-effectiveness of CT screening: a modeling study. *eClinicalMedicine.* 2023;88:103446
9. Poiseuil M et al. Impact of organized and opportunistic screening on excess mortality and on social inequalities in breast cancer survival. *Int J Cancer.* 2025;156(3):518-28.
10. Kotsopoulos J et al. Bilateral oophorectomy and all-cause mortality in women with *BRCA1* and *BRCA2* sequence variations. *JAMA Oncol.* 2024;10(4):484-92.
11. Lubinski J et al. MRI surveillance and breast cancer mortality in women with *BRCA1* and *BRCA2* sequence variations. *JAMA Oncol.* 2024;10(4):493-9.
12. Lee A et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. *Genet Med.* 2019;21(8):1708-18.
13. Lehman CD et al. Deep learning vs traditional breast cancer risk models to support risk-based mammography screening. *J Natl Cancer Inst.* 2022;114(10):1355-63.
14. Ipina MA et al. Risk-based breast cancer screening: an expert Delphi consensus assessment of evidence under the EUCanScreen initiative. Abstract 67. The Early Detection of Cancer Conference, 21-23 October, 2025.
15. Ipina MA et al. Risk-based breast cancer screening: mapping three decades of evidence under the EUCanScreen initiative. Abstract 68. The Early Detection of Cancer Conference, 21-23 October, 2025.
16. Wei X et al. Defining lifetime risk thresholds for breast cancer surgical prevention. *JAMA Oncol.* 2025;11(9):1072-82.
17. Chlebowski RT et al. Dietary modification and breast cancer mortality: long-term follow-up of the women's health initiative randomized trial. *J Clin Oncol.* 2020;38(13):1419-28.
18. Burn J et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. *Lancet.* 2020;395(10240):1855-63.
19. Burn J et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. *Lancet.* 2011;378(9809):2081-7.
20. US Preventive Services Task Force. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. *JAMA.* 2016;315(23):2564-75.
21. McNeil JJ et al. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. *N Engl J Med.* 2018;379(16):1509-18.
22. McNeil JJ et al. Effect of aspirin on cancer incidence and mortality in older adults. *J Natl Cancer Inst.* 2021;113(3):258-65.
23. Guo CG et al. Aspirin use and risk of colorectal cancer among older adults. *JAMA Oncol.* 2021;7(3):428-35.
24. Okada S et al. Effect of aspirin on cancer chemoprevention in Japanese patients with type 2 diabetes: 10-Year observational follow-up of a randomized controlled trial. *Diabetes Care.* 2018;41(8):1757-64.
25. Wang K et al. Healthy lifestyle, endoscopic screening, and colorectal cancer incidence and mortality in the United States: a nationwide cohort study. *PLoS Med.* 2021;18(2):e1003522.
26. Sikavi DR et al. Aspirin use and incidence of colorectal cancer according to lifestyle risk. *JAMA Oncol.* 2024;10(10):1354-61.
27. Liao X et al. Aspirin use, tumor *PIK3CA* mutation, and colorectal-cancer survival. *N Engl J Med.* 2012;367(17):1596-606.
28. Martling A et al. Low-dose aspirin for PI3K-altered localized colorectal cancer. *N Engl J Med.* 2025;393(11):1051-64.
29. Güller U et al. Adjuvant aspirin treatment in *PIK3CA*-mutated colon cancer patients: the SAKK 41/13 prospective randomized placebo-controlled double-blind trial. *Clin Cancer Res.* 2025;31(15):3142-9.
30. Yang J et al. Aspirin prevents metastasis by limiting platelet TXA2 suppression of T cell immunity. *Nature.* 2025;640:1052-61.