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Abstract
Lung cancer is one of the most common malignant tumours worldwide, with non-small 
cell lung cancer (NSCLC) accounting for the largest number of cases among both men 
and women. Poor patient prognosis due to therapeutic resistance remains a current issue, 
underscoring the need for a more comprehensive understanding of the underlying biology 
of the pathogenesis and progression mechanisms of NSCLC. Integrating multi-omics 
approaches, such as genomics, transcriptomics, proteomics, and metabolomics, has become 
crucial for studying the underlying biology of complex diseases like lung cancer. Applying 
these methods not only enhances knowledge of the mechanisms of lung cancer but also 
plays a pivotal role in identifying biomarkers and therapeutic targets for implementing 
personalised treatment plans. This review quantitatively analyses the predictive capability 
of integrated multi-omics models by synthesising findings from studies utilising clinical data 
(including survival outcomes and treatment response) with multi-omics technologies to 
pinpoint essential biomarkers and pathways associated with NSCLC. The author focused on 
comparing the reported predictive accuracy metrics of these models and the consistency 

Editor's Pick
I have selected this review as my Editor’s Pick for this issue of EMJ Oncology because  
multi-omics integration is rapidly emerging as a cornerstone of precision cancer medicine. 
Non-small cell lung cancer remains one of the most challenging malignancies to diagnose 
and treat, and advancing biomarker and pathway discovery is essential to improving 
outcomes. This article provides a timely and comprehensive exploration of how integrated 
multi-omics approaches are reshaping our understanding of non-small cell lung cancer  
and opening new avenues for personalised therapy.  
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INTRODUCTION

Lung cancer remains the most frequently 
diagnosed malignancy and the leading 
cause of cancer tumour-related mortality 
worldwide.1 Non-small cell lung cancer 
(NSCLC) is the primary subtype of lung 
cancer, accounting for 85% of lung cancer 
cases.2 Despite advances in targeted 
therapies and immunotherapies, therapeutic 
resistance remains the principal barrier to 
durable responses and long term survival.3,4 
Resistance mechanisms span the genome, 
epigenome, transcriptome, proteome, 
metabolome, and tumour microenvironment 
(TME), and evolve dynamically during 
treatment. Understanding how these 
mechanisms interact across molecular layers 
is essential for improving treatment efficacy 
and patient outcomes.4

NSCLC arises from a multifactorial aetiology 
involving both environmental and intrinsic 
factors. Environmental exposures such 
as tobacco smoke, air pollution, and 
occupational carcinogen exposure induce 
chronic epithelial damage and mutagenesis, 
while internal factors, including genetic 
predisposition, immune dysregulation, and 
chronic inflammation, contribute to tumour 
initiation, progression, and immune escape. 
These aetiologic drivers vary in impact 

across histological subtypes and patient 
populations, underscoring the need for 
stratified prevention and therapy strategies.

Histologically, NSCLC is classified into 
three major subtypes: adenocarcinoma, 
squamous cell carcinoma, and large cell 
carcinoma (Supplementary Table 1). Each 
subtype exhibits distinct pathological 
characteristics, clinical behaviours, and 
molecular signatures. Biomarkers such as 
EGFR, ALK, and programmed death-ligand 1 
(PD-L1) are routinely used to guide diagnosis 
and therapeutic decisions, particularly in 
the context of targeted therapy and immune 
checkpoint inhibition.5-7 However, their 
predictive power is limited by the emergence 
of acquired resistance, which often involves 
bypass signalling, epigenetic reprogramming, 
and TME-mediated immune evasion.

While blood-based biomarkers such as 
circulating proteins and cytokines offer a 
minimally invasive route for early detection 
and longitudinal monitoring, their clinical 
translation remains limited by challenges 
in specificity and validation across diverse 
populations. Expression levels of IL-6, IL-8, 
and colony stimulating factor 1 (CSF-1), 
for example, are influenced by systemic 
inflammation, comorbid conditions, and 
sampling variability, complicating their 

Key Points

1. Non-small lung cancer (NSCLC) accounts for approximately 85% of lung malignancies and remains the leading 
cause of cancer mortality worldwide, underscoring the urgent need for biomarker-driven precision strategies. 

2. This systematic review synthesised evidence from 50 original and peer reviewed research articles published 
during the last 5 years, integrating genomics, transcriptomics, proteomics, metabolomics, and epigenomics to 
evaluate biomarker discovery, patient stratification, and therapy optimisation in NSCLC. 

3. Multi-omics integration enables clinically actionable biomarker identification, enhances prediction of 
immunotherapy response, and informs personalised treatment frameworks. Collaborative validation and translational 
pipelines are essential to embed these insights into routine NSCLC care. 

of identified key biomarkers across different studies. The author highlights the importance of 
integrating multi-omics analyses in the development of targeted therapies, and offers a roadmap 
for future clinical applications, emphasising challenges in data integration and biomarker 
validation, alongside opportunities for novel clinical trial designs. This review aims to provide a 
comprehensive quantitative assessment of the current state of integrated multi-omics in NSCLC, 
ultimately informing the design of more effective personalised therapeutic strategies and future 
research directions.
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interpretive value in NSCLC.8,9 Similarly, 
epigenomic markers, particularly DNA 
methylation signatures, show promise for 
subtype classification and risk stratification. 
However, methylation patterns are highly 
context dependent, varying with tumour 
subtype, anatomical sites, environmental 
exposures, and immune status.10,11 These 
limitations underscore the need for multi-
layered integration and robust validation 
frameworks, reinforcing the rationale for 
multi-omics approaches that triangulate 
signals across platforms to improve 
biomarker fidelity and clinical relevance.12-16

Recent concepts in tumour biology highlight 
how cancers remodel their microenvironment 
and hijack systemic homeostasis, including 
neuroendocrine signalling pathways that 
influence immune function, metabolism, and 
stress response.12 These interactions shape 
the natural history of NSCLC and complicate 
therapeutic design, reinforcing the need for 
narrative frameworks that capture tumour-
intrinsic and host-mediated dynamics.

Multi-omics technologies offer a 
comprehensive approach in interrogating 
NSCLC biology that predicts therapeutic 
efficacy and for discovering personalised 
targets.13,14 The term ‘omics’ refers 
to a suite of technologies: genomics 
(DNA sequencing to identify actionable 
mutations), transcriptomics (RNA 
profiling reveals regulation and treatment 
response), proteomics (protein level 
analysis revealing tumour progression and 
resistance mechanisms), metabolomics 
(small metabolites profiling for therapeutic 
targeting and disease monitoring), and 
epigenomics (genome wide assessment 
of epigenetic regulation). The integration 
of these platforms enables the discovery 
of biomarkers that predict therapeutic 
efficacy, inform personalised treatment 
strategies, and support the development of 
precision oncology studies.13,15 

The TME, a complex ecosystem of cancer 
cells, stromal components, immune 
infiltrates, and extracellular matrix, 
plays a pivotal role in NSCLC resistance 
progression. Single-cell multi-omics 
technologies have revealed profound 
TME heterogeneity and cell-type-specific 
drivers of resistance and progression, while 

systems biology approaches integrate multi-
layer data to establish a causal link between 
molecular alterations and phenotypic 
outcomes.15-17 Proteomics studies, for 
example, connect genomic alterations 
with protein-level consequences, exposing 
therapeutic vulnerabilities that would 
be missed by single-platform analyses. 
Emerging evidence also implicates the 
microbiome as a modulator of host immunity 
and therapeutic response, particularly 
in immunotherapy.17,18 Metagenomic and 
whole-genome sequencing of microbial 
communities, including bacteria, fungi, 
viruses, and archaea, have revealed 
associations between microbial signatures 
and treatment outcomes. 

Pharmacokinetic-pharmacodynamic 
modelling represents another frontier in 
NSCLC research. These mathematical 
frameworks simulate drug–tumour 
interactions, enabling the optimisation of 
radiotherapy and chemotherapy schedules 
and the prediction of resistant subclones, 
and guiding the design of regimens that 
minimise resistance and enhance efficacy.19,20

In summary, NSCLC exemplifies the 
complexity of cancer biology, where 
genetic, epigenetic, metabolic, and 
microenvironmental factors converge to 
drive resistance. Multi-omics integration 
provides the most promising avenue 
to unravel this complexity, enabling 
the development of biomarker-guided 
strategies that anticipate resistance, 
personalise therapy, and ultimately  
improve patient outcomes.

MULTI-OMICS INTEGRATION  
IN NON-SMALL CELL LUNG 
CANCER RESISTANCE

Investigating the intricate molecular changes 
that drive resistance to targeted therapies 
is crucial for understanding tumour cell 
survival and clinical progression during 
treatment. In recent years, therapies 
targeting EGFR, BRAF, and KRAS mutations 
and ALK, ROS-1, RET, NTRK fusions/
rearrangements have improved survival in 
subsets of patients. Nevertheless, treatment 
responses remain incomplete, with acquired 
resistance emerging as the rule rather than 
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the exception.21 Resistance mechanisms, 
including genetic mutations, epigenetic 
reprogramming, metabolic adaptation, and 
TME-mediated immune evasion, complicate 
the durability and the effectiveness of 
targeted and immune-based therapies 
(Supplementary Table 2). Therefore, multi-
omics approaches, by interrogating tumour 
biology both at baseline and longitudinally 
during therapy, present promising tools to 
address these challenges.21,22

The interplay between genetic mutations 
and the TME is central to NSCLC complexity. 
Understanding these factors is vital for 
developing effective therapies and overcoming 
resistance in patients with NSCLC.

Emerging concepts further highlight how 
tumours regulate their environment and 
hijack systemic homeostasis through 
neuroendocrine signalling, influencing 
immune function, metabolism, and stress 
responses. These interactions shape the 
natural history of NSCLC and complicate 
therapeutic design, reinforcing the need 
for frameworks that capture both tumour-
intrinsic and host-mediated dynamics.12

While blood-based biomarkers such as 
circulating proteins and cytokines offer a 
minimally invasive route for early detection 
and longitudinal monitoring, their clinical 
translations remain limited by challenges in 
specificity, reproducibility, and validation 
across diverse populations.

Expression levels of IL-6, IL-8, and CSF-1, 
for example, are influenced by systemic 
inflammation, comorbid conditions, and 
sampling variability, complicating their 
interpretive value in NSCLC.8,17 Similarly, 
epigenomic markers, particularly DNA 
methylation signatures, show promise for 
subtype classification and risk stratification. 
However, methylation patterns are highly 
context-dependent, varying with tumour 
subtype, anatomical site, environmental 
exposures, and immune status.23,11 These 
limitations underscore the need for multi-
layered integration and robust validation 
frameworks, reinforcing the rationale for 
multi-omics approaches that triangulate 
signals across platforms to improve 
biomarker fidelity and clinical relevance.12,16

From DNA to RNA and ultimately to proteins, 
the amount and complexity of information 
progressively increases. Genomics has 
revealed key mutations, supporting the 
development of targeted therapies in 
personalised medicine.17 In NSCLC, genomic 
methods have identified aberrant activation 
of the PI3K/protein kinase B (AKT)/mTOR 
pathway as a driver of resistance to 
epidermal growth factor receptor (EGFR) 
tyrosine kinase inhibitors (TKI). The 
discovery led to drugs targeting mTOR, 
EGFR, and ALK, which have shown clinical 
effectiveness in lung cancer treatment.24 

However, the intricate nature of cancer 
mechanisms makes it difficult to establish 
clear links between tumours and specific 
genetic variants, necessitating a more 
nuanced approach to tackle its challenges.

Transcriptomics captures dynamic RNA 
profiles reflecting cellular states,17,25 while 
proteomics reveal functional protein 
changes, including post-translational 
modifications (phosphorylation, acetylation, 
and glycosylation) that change proteins’ 
structure and functionality.25

Next-generation sequencing and mass 
spectrometry have transformed the 
understanding of cancer biology by 
enabling comprehensive genomic, 
transcriptomic, and proteomic profiling. 
Next-generation sequencing allows for 
both genomic DNA and RNA sequencing.25 
RNA sequencing explores transcripts, 
isoforms, splice variants, single-nucleotide 
polymorphisms, and chimeric gene fusions 
with high sensitivity and accuracy.17,22 Mass-
spectrometry-based proteomics quantifies 
proteins in cells, tissues, and fluids.25 
Large-scale initiatives such as The Cancer 
Genome Atlas (TCGA) programme integrate 
publicly available multi-omics databases 
across thousands of patients, providing a 
reference framework for NSCLC.21,26

Karaman et al.,15 conducted a network-based 
integrative analysis of RNA sequencing and 
DNA methylation data across lung, breast, 
colorectal, and kidney cancers identifying 
common prognostic biomarkers.  
This approach led to the identification of 
several significant biomarkers, including the 
SEC61G and the PTDSS1 genes associated 
with poor survival outcomes.15
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Metabolomics has emerged as a powerful 
tool for identifying metabolic alterations.13 

Shestakova et al.27 used targeted 
metabolomic profiling to distinguish patients 
with NSCLC from healthy individuals, 
identifying changes in tryptophan 
metabolism, the tricarboxylic acid cycle, and 
lipid metabolism, and developed a machine 
learning model with high diagnostic 
accuracy (area under the curve: 0.96), 
highlighting the potential of metabolomics 
in NSCLC diagnostics.27 Plasma and serum 
metabolomics offer minimally invasive 
diagnostics, but disease-specific plasma 
metabolites remain difficult to validate.13 

Despite these advances, integration 
remains challenging. Multi-omics datasets 
are complex, heterogeneous, and high 
dimensional, requiring sophisticated 
computational methods.28-30

Machine learning and deep learning 
approaches are increasingly applied,31,32 but 
reproducibility and interpretability remain 
obstacles. Addressing these challenges 
demands advanced computational 
methods and substantial resources, but 
overcoming them could result in significant 
advancements in precision oncology and 
personalised medicine for NSCLC.33

This review quantitatively synthesises the 
predictive performance of integrated multi-
omics models and evaluates the impact of 
open-source tools on translational research. 
By examining studies that leverage clinical 
data and multi-omics technologies to identify 
key biomarkers and relevant pathways in 
NSCLC, the author provides a roadmap for 
future clinical implementation, highlighting 
both critical challenges (specificity, 
reproducibility, context-dependence)  
and emerging opportunities in the field.

METHODS

For this systematic review, the author 
conducted a structured literature search 
using PubMed, covering publications from 
January 2020–March 2025. The objective 
was to identify original research articles 
reporting multi-omics data with clinically 
relevant biomarker findings in NSCLC. Three 
keywords-based strategies were applied 

using the ‘[Title] AND [Title/Abstract]’ filed 
tags to capture studies addressing omics 
modality, disease intersection, biomarker 
relevance, subtype stratification, and TME.

The search strings were:

•	 lung cancer and omics ([Title/Abstract]) 
AND (lung cancer [Title])) AND (omics 
[Title/Abstract];

•	 NSCLC and omics([Title/Abstract]) 
AND (NSCLC[Title])) AND (omics [Title/
Abstract]; and

•	 NSCLC, omics, and resistance([Title/
Abstract]) AND (omics [Title])) AND 
(resistance [Title/Abstract]).

Filters included “LUAD,” “LUSC,” and 
“tumour microenvironment” to refine 
results towards subtype-specific and 
clinically actionable findings. Additional 
keywords such as “biomarker,” “diagnostic,” 
“prognostic,” “therapeutic,” “survival,” and 
clinical outcome” were used to identify 
studies with translational potential. 

Studies included were original research 
articles reporting multi-omics data on 
NSCLC biomarkers that focused on human 
subjects, provided subtype-specific 
insights (lung adenocarcinoma [LUAD], lung 
squamous cell carcinoma [LUSC]), and were 
published in peer-reviewed journals. The 
studies that were excluded were reviews, 
editorials, or conference abstracts, as well 
as studies lacking omics integration or 
clinical relevance.

The PubMed searches yielded 196, 30, and 
three records, corresponding to search 
one, two, and three, respectively. After 
deduplication and relevance screening, 30 
articles were shortlisted, of which six were 
selected for detailed synthesis based on 
methodological rigour and translational 
value. To ensure currency and alignment 
with the review’s objectives, two additional 
studies published in March 2025 were 
manually incorporated into the final  
analysis (Figure 1).  

All included studies were appraised  
for methodological clarity, completeness  
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of omics layers, subtype stratification,  
and relevance to clinical endpoints.  
Bias was mitigated through predefined 
eligibility criteria, transparent screening,  
and standardised data extraction, with 
emphasis on studies demonstrating 
reproducibility, multi-layer integration,  
and external validation.

RESULTS

Multi-omics analyses identified a broad 
spectrum of biomarkers with diagnostic, 
prognostic, therapeutic, and mechanistic 
relevance in NSCLC. To enhance clarity and 
clinical utility, findings were synthesised into 
functional domains and molecular pathways, 
highlighting convergent drivers, resistance 
mechanisms, and survival determinants.

Oncogenic Drivers and  
Tumour Suppressors
Mutations in TP53 and EGFR were the most 
consistent signals across studies. TP53, the 
most frequently mutated gene in NSCLC,31 
was associated with recurrence, immune 
evasion, and resistance to conventional 
therapies,22,31,33 positioning it as both a 
prognostic and predictive biomarker. Its 
mutation status also influenced sensitivity to 
immune checkpoint inhibitors.18,33,32 In LUAD 
compared with LUSC, TP53 mutations were 
linked to altered tumour microbiota, immune 
infiltration, and histological architecture, and 
could be predicted using multimodal deep 
learning models integrating histopathology, 
microbiome, and transcriptomic features.31

EGFR mutations, present in over half of 
early-stage NSCLC cases, predicted shorter 
disease-free survival and recurrence.32 
EGFR-TKIs remain a cornerstone of 
precision medicine,34 and integrative multi-
omics analyses confirmed favourable overall 
survival with afatinib in patients who were 
EGFR-positive.35 Resistance to EGFR-TKIs 
frequently emerged through secreted 
phosphoprotein 1 (SPP1) overexpression 
and activation of the yes-associated protein 
(YAP)/ transcriptional coactivator with 
PDZ-binding motif (TAZ) driven epithelial-
mesenchymal transition (EMT), conferring 
stem-like and invasive properties.34,36,37 
Other genomic signals included TTN 

mutations, correlating with chemotherapy 
and immunotherapy response,22,32 and 
ZNF71, which stratified patients into 
prognostic groups.38,39

Interpretation
TP53 and EGFR exemplify convergent 
drivers that shape both prognosis and 
therapy, while EMT-related pathways 
highlight recurrent mechanisms of 
therapeutic escape with the need for 
adaptive monitoring.

Immune Modulation and  
Systemic Inflammation
Immune-related biomarkers were prominent 
across omics layers, ZFHX3 mutations 
correlated with enhanced immune 
responses and immunotherapy sensitivity.36 
Circulating cytokines such as IL6, IL8, 
CSF1, and C-X-C motif chemokine ligand 
13 (CXCL13) predicted poor survival.8 
Integrated microbiomic, metabolomic, and 
proteomic analyses identified C-reactive 
protein (CRP), lipopolysaccharide binding 
protein (LBP), and cluster of differentiation 
(CD)14 as systemic inflammatory markers 
reflecting systemic immune activation.40 

Interpretation
Immune biomarkers provide stratification 
for immunotherapy, but also signal systemic 
inflammation, reinforcing the need for 
integrated host–tumour profiling.

Epigenetic and Metabolic Signatures
DNA methylation alterations (MGMT, 
CDKN2A, PCDH17, IRX1, TBX5, and 
HSPB6) were recurrently implicated 
in carcinogenesis.10,11 Large-scale, 
genomewide association studies linked 
methylation biomarkers to NSCLC risk,11 
while epigenomic–transcriptomic integration 
nominated novel methylation biomarkers 
with diagnostic and therapeutic relevance.10

Metabolomic profiling differentiated LUAD 
from LUSC,41 while integrated metabolomic–
proteomic analyses identified biomarkers 
predictive of immunotherapy sensitivity.33
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Interpretation
Epigenetic and metabolic biomarkers 
highlight contextdependent signals that 
enrich stratification but require integration 
with genomic and transcriptomic data for 
reliable application.

Survival-Associated Biomarkers
Survival outcomes were linked to both 
tumour intrinsic signals and systemic 
mediators. Transcriptomic signals such as 
NKX21, CAV1, YBX1, FN1, and CDH3 were 
associated with LUAD survival.42  
 
Circulating proteins (IL6, IL8, CSF1, matrix 
metallopeptidase 12 [MMP12], CXCL13) 
predicted poor outcomes.8 Immunerelated 
genes (TNS3, SEPT7, PUS1, IRF9, COMP, 
KLRB1, CD45, CD244) further correlated 
with survival.17,9,43,44

Interpretation
Survival reflects the dual importance of 
tumour biology and host immune response, 
reinforcing the need for integrated 
biomarker panels in prognostic modelling.

Longitudinal and Clinical Insights
Several studies emphasised the value of 
tracking biomarker patterns over time. 
Serial sampling and timeseries omics 
data enabled the monitoring of tumour 
evolution, the emergence of resistance, and 
the adaptive responses to therapy.31,34,45 
Dynamic cytokine profiling revealed 
immune shifts,41 while comparative analyses 
distinguished NSCLC from sarcoma.42 
Importantly, leptomeningeal metastasis 
was identified as a severe complication in 
EGFR-mutant NSCLC. Cerebrospinal fluid-
based biomarkers enabled early detection/
identified central nervous system (CNS) 
dissemination in EGFR-mutant LUAD and 
CNS-specific monitoring.8

Interpretation
Longitudinal profiling demonstrates how 
biomarkers evolve under therapeutic 
pressure, offering realtime insights into 
resistance and progression, and reinforcing 
the need for adaptive, multi-omics-guided 
clinical strategies. 

Leptomeningeal metastasis highlights 
the importance of extending biomarker 
discovery to CNS involvement.

Integrated Insights
Synthesising across pathways reveals  
three dominant themes:

•	 Convergent drivers (TP53, EGFR) 
underpin both prognosis and 
therapeutic response, making them 
central to biomarker-guided strategies.

•	 Resistance mechanisms (SPP1, YAP/
TAZ, EMT, inflammatory cytokines) recur 
across omics layers, highlighting the 
importance of longitudinal monitoring 
and adaptive therapy.

•	 Context dependent signals (methylation, 
metabolic fingerprints, immune 
mediators) enrich stratification but 
require multilayer integration for 
reproducible application.

This pathway-based synthesis distils 
actionable conclusions from a data 
rich literature base, bridging molecular 
complexity with clinical translation. 
It highlights the need for biomarker 
frameworks that integrate tumour drivers, 
resistance pathways, and systemic host 
responses to guide precision oncology  
in NSCLC.

DISCUSSION

Recent years have witnessed a marked 
increase in studies applying multi-omics 
approaches to biomarker discovery 
in NSCLC. In the context of NSCLC, 
transcriptomics and genomics remain the 
dominant platforms, while proteomics and 
metabolomics provide complementary 
insights into treatment response and  
patient stratification. 

Epigenomics, immunogenomics, and 
microbiomics play supporting roles in 
specific biomarker identification, enabling  
a more holistic molecular characterisation  
of NSCLC.

The advancements in biomarker discovery 
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through multi-omics approaches hold  
great promise for clinical applications in 
NSCLC. In summary, the clinical outcomes 
associated with biomarker identification  
in the selected research studies can be 
applied to the following.

Prognosis
Multi-omics approaches have advanced 
prognostic assessment by extending 
beyond canonical oncogenes such as 
TP53 and EGFR to include immune-
related factors (CXCL13, MMP12, and 
CSF-1) and metabolites as candidate 
biomarkers to predict disease progression 
and patients’ response to targeted 
treatments and immunotherapy.22,31-34 

For example, TP53 mutations not only 
correlate with poor outcomes but also 
impair antigen presentation and modulate 
cytokine signalling, contributing to immune 
evasion and reduced immunotherapy 
efficacy.35 These findings highlight how 
integrated biomarker panels can refine 
risk stratification, although reproducibility 
across cohorts remains a critical challenge. 
Collectively, they reflect a broader shift 
towards understanding the tumour’s 
molecular complexity and its interactions 
with both the immune system and the TME, 
with the ultimate goal of advancing targeted 
therapy and patients’ stratification.35,46

Early-Stage Detection
Blood-based biomarkers offer a minimally 
invasive route for early lung cancer 
detection, but their translation is limited 
by specificity and reproducibility issues. 
Genomic signatures and network analyses 
have identified a 12-gene signature that 
can detect lung cancer in biological fluids 
at early stages of the disease and is 
associated with a poor disease outcome, 
enabling routine screening and early 
intervention to improve patient outcomes.38 
Several studies also used multi-omics 
techniques (transcriptomics, genomics, 
and metabolomics) to identify biomarkers 
that differentiate NSCLC from normal 
tissue.39,47 Integrating metabolomics and 
lipidomics emphasises the importance 
of characterising the metabolome and 
lipidome in the plasma of patients with lung 

cancer to create a comprehensive metabolic 
fingerprint and identify potential clinical 
diagnostic markers for lung cancer.39,23

Therapy Response Prediction
Multi-omics platforms have identified 
biomarkers predicting therapy response, 
confirming the importance of oncogenes 
such as CCND1, TP53, MYC, and EGFR 
in identifying the susceptibility of NSCLC 
to therapies such as TKIs and immuno-
checkpoint inhibitors.33,10 Furthermore, 
metabolomic and proteomic analyses refine 
immunotherapy response prediction,33 

while SPP1 overexpression exemplifies 
how tumour-intrinsic changes remodel 
the TME to drive EGFR-TKI resistance, 
promoting tumour-associated macrophage 
infiltration and immunosuppressive 
signalling and ultimately leading to poor 
survival outcomes.40 Other candidates, 
such as ZFHX3 mutations, correlate with 
an increased immune response, suggesting 
predictive utility for immunotherapy in 
patients with lung cancer.11 Multi-omics 
platforms have identified predictors 
of therapy response, confirming 
that oncogenes (such as HMGB3 
overexpression) are linked to worse survival 
in small cell lung cancer, while CASP10 is 
associated with better prognosis, indicating 
their potential as prognostic biomarkers. 
These examples underscore both the 
promise and the need for robust validation 
frameworks to ensure reproducibility.11

Chemotherapy and 
Immunotherapy Guidance
Combined metabolomic and transcriptomic 
analyses distinguish LUAD and LUSC 
subtypes, identify prognostic markers, and 
predict immunotherapy sensitivity.33,48 A 
proposed 14-gene signature serves as a 
biomarker panel to guide immunotherapy 
and chemotherapy, supporting personalised 
treatment for patients with NSCLC.45 
Importantly, the integration of omics data 
into treatment algorithms must account 
for tumour heterogeneity and dynamic 
changes in therapy, reinforcing the need for 
longitudinal sampling.
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IDENTIFICATION

SCREENING

INCLUDED

KEY FINDINGS

Studies Included in Analysis

33

Total Records Identified

Combined from all three searches

198

Pubmed Search #2

30

Records identified

Pubmed Search #1

Records identified

196

NSCLC specific 

Pubmed Search #3

3

Records Screened

Multi-omics techniques for 
NSCLC biomarkers

Not relevant to multi-omics 
techniques for NSCLC biomarkers

198

Records Excluded

165

Note: This PRISMA diagram illustrates the systematic review process for identifying multi-omics 
biomarkers in Non-Small Cell Lung Cancer (NSCLC). The review identified TP53 and EGFR as 
key recurrent biomarkers with significance across multiple omics platforms and clinical contexts.

Recurrent Biomarkers Identified

TP53
• Appears across multiple studies
• Key biomarker for prognosis
• Associated with treatment response
• Relevant across various omics contexts

EGFR

Clinical Contexts: Prognosis, Treatment Response, Carcinogenesis

• Linked to treatment response
• Specifically associated with resistance to targeted therapies
• Recurrent across clinical contexts

Figure 1: Preferred Reporting Items for Systematic reviews and Meta-Analyses flow diagram of study selection for 
non-small cell lung cancer multi-omics biomarker review.

NSCLC: non-small cell lung cancer; PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analyses.
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Survival Prediction
Multi-omics approaches have revealed 
molecular markers associated with survival 
outcomes.37-41 Easily measurable serum 
proteins (e.g., IL-6, IL-8) offer non-invasive 
biomarkers for predicting poor outcomes,34 
though their interpretive value is confounded 
by systemic inflammation and comorbidities. 
These findings highlight the potential of 
multi-omics to stratify patients by survival 
risk, while also underscoring the importance 
of context-dependent validation.

Carcinogenesis
Epigenomic studies highlight methylation-
based biomarkers as potential diagnostic 
and therapeutic targets.8,42 Genome-wide 
association studies confirm that genetic and 
environmental factors shape methylation 
patterns, reinforcing their relevance in 
NSCLC development.8 However, methylation 
signatures remain highly variable and context 
dependent, influenced by tumour subtype, 
anatomical site, and immune status. This 
variability underscores the importance of 
multi-layered integration to capture the 
carcinogenic process more faithfully.

Translational Framework  
and Future Directions
The integration of multi-omics into clinically 
actionable endpoints remains challenging 
due to high dimensionality, heterogeneity, 
and computational complexity.28,30  
Advanced machine learning and deep 
approaches31,32 are increasingly applied, but 
reproducibility and interpretability remain 
obstacles. The author’s proposed framework 
(Figure 2) maps five omics domains 
(genomics, epigenomics, transcriptomics, 
proteomics, and metabolomics) onto 
diagnostic, prognostic, therapeutic, 
mechanistic, and longitudinal categories.  
By stratifying outputs across NSCLC 
subtypes, this framework supports 
biomarker discovery, resistance profiling,  
and personalised therapy guidance, 
reinforcing the trajectory from molecular 
insight to patient-centred outcomes. 

CONCLUSION

Multi-omics approaches are reshaping 
NSCLC research, transforming biomarker 
discovery, diagnosis, prognosis, and 
treatment optimisation. By integrating 
genomics, transcriptomics, proteomics, 
metabolomics, and epigenomics, these 
strategies move beyond single-layer 
analyses to capture the molecular 
complexity of tumours and their interactions 
with the microenvironment,22,31-34 enabling 
more precise patient stratification and 
accelerating the transition towards 
personalised therapeutic strategies.35-43

Recent advances highlight three  
major implications: multi-omics expands 
the repertoire of clinically actionable 
biomarkers,33,10 refines patient stratification 
to predict therapy responses,11,45  
and decodes tumour complexity  
and resistance pathways to inform  
targeted interventions.40,41-47

Multi-omics approaches provide valuable 
insights into the molecular complexity 
of tumours and their interactions with 
the TME, but several challenges remain. 
The absence of standardised protocols, 
incomplete datasets, and the biological 
heterogeneity of NSCLC limit reproducibility 
and clinical translation.36,42 High-dimensional 
data demand advanced computational 
pipelines, rigorous statistical frameworks, 
and collaborative validation across diverse 
cohorts. Without these, the promise of 
multi-omics risks remaining confined to 
research settings.17,42 

Incomplete Datasets
Missing data are common due to limitations 
in sample availability, costs, and experimental 
issues. These missing values can hinder 
data integration and compromise the validity 
of downstream analyses. To address this, 
researchers have developed sophisticated 
imputation methods that leverage the 
correlations among different omics layers to 
estimate missing data more accurately.9
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Biological Complexity
Integrating these techniques remains 
challenging due to the heterogeneity among 
different cancer types and within tumours 
of the same type. An accurate interpretation 
of complex genetic and molecular data still 
faces barriers due to difficulties in integrating 
genomics, transcriptomics, proteomics, and 
metabolomics data from diverse sources.17,43 
Handling multiple high-dimensional datasets 
and interpreting complex biological systems 
also represents a barrier, requiring advanced 
computational utilities and rigorous statistical 
methods to guarantee accurate data 

interpretation.17 Therefore, the identification 
of reliable biomarkers still poses a hurdle 
and requires the collaboration and combined 
efforts of different sources.17,43

Looking forward, open-source tools and 
collaborative research networks will 
be pivotal in bridging the gap between 
discovery and clinical implementation.9,17 
By offering accessible, scalable, and 
reproducible analytical frameworks, open-
source platforms empower researchers to 
integrate and analyse complex multi-omics 
datasets more effectively. 

Figure 2: Multi-omics integration framework for non-small cell lung cancer biomarker discovery: mapping 
molecular inputs to functional clinical endpoints. 

This layout reflects the progression from molecular input to patient-centred outcomes, supporting biomarker 
classification and clinical application.

AKT: protein kinase B; CEA: carcinoembryonic antigen; circRNA: circular RNA; CNS: central nervous system; CSF: 
cerebrospinal fluid; CXCL13: C-X-C motif chemokine ligand 13; Cyfra21: cytokeratin fragment 21-1; EGFR: epidermal 
growth factor receptor; IRX1: iroquois homeobox 1; LM: leptomeningeal metastasis; lncRNA: long non-coding RNA; 
miRNA: micro RNA; MMP12: matrix metallopeptidase 12; NSCLC: non-small cell lung cancer; PCDH17: protocadherin 17; 
PTM: posttranslational modifications; SPP1: secreted phosphoprotein 1; TAZ: transcriptional co-activator with PDZ-
binding motif; TBX5: T-box transcription factor 5; TKI: tyrosine kinase inhibitor; vs: versus; YAP: yes-associated protein.
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Advancing NSCLC care requires 
coordinated, multidisciplinary efforts 
to bridge the gap between research 
and clinical implementation, thereby 
accelerating progress in diagnostics, 
prognostics, and therapeutic strategies.  
The integration of multi-omics not only 
enriches understanding of tumour biology 
but also establishes a foundation for 
precision medicine. Sustained collaboration 
and innovation are essential to translate 
these insights into practice, ultimately 
improving patient outcomes and shaping 
the future of cancer care. 

To operationalise multi-omics insights 
into patient-centric strategies, the author 
proposes a decision-making framework 
(Figure 3) that unifies five omics layers 
(genomics, transcriptomics, proteomics, 
metabolomics, and epigenomics) and 
maps them to actionable biomarkers, 
subtype-specific therapies, and resistance 
mechanisms. This model supports clinical 
decision-making by linking molecular 
profiles to targeted treatments, the 
prediction of immunotherapy sensitivity, and 
longitudinal monitoring, thereby reinforcing 
the translational trajectory from molecular 
discovery to personalised oncology.

Figure 3: Multi-omics decision-making framework for non-small cell lung cancer: integrating molecular profiles to 
guide subtype-specific treatment and monitoring.

This patient-centric, decision-making framework for NSCLC integrates multi-omics data to inform subtype-specific 
therapeutic strategies. Molecular inputs, including genomics (EGFR, TP53, TTN), transcriptomics (RNA sequencing, 
gene expression, splicing), proteomics/metabolomics (protein expression, post-translational modifications, metabo-
lites), and epigenomics (MGMT, CDKN2A), are consolidated through a centralised integration pipeline. The framework 
anchors on the initial biopsy and NSCLC patient profile, branching into tailored pathways for LUAD, LUSC, and unclas-
sified/mixed subtypes. Each pathway incorporates molecular markers to guide treatment selection (e.g., EGFR-TKI, 
immunotherapy, chemo-immunotherapy), resistance profiling, and longitudinal tracking. Outcome categories include 
treatment planning, monitoring schedules, and prognostic stratification, reinforcing the translational trajectory from 
molecular insight to personalised care.

CD: cluster of differentiation; CRP: C-reactive protein; EGFR: epidermal growth factor receptor; LBP: lipopolysaccha-
ride binding protein; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; NSCLC: non-small cell lung 
cancer; SPP1: secreted phosphoprotein 1; TKI: tyrosine kinase inhibitor; vs: versus; ZFX3: zinc finger protein x linked; 
ZNF71: zinc finger protein 71.
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