

The Evolving Biomarker Landscape in GI Cancers

Citation: EMJ Oncol. 2025;13[1]:100-101. <https://doi.org/10.33590/emjoncol/GNSE9148>.

Prevalence of Gastrointestinal Cancers

- The main types of GI cancers are cancers of the oesophagus, stomach, colon and rectum, liver, and pancreas.¹
- In 2022, there were over **4,000,000** new cases and **3,000,000** deaths from the five GI cancers, accounting for **23.9%**, and **33.2%** of all new cancer cases and deaths worldwide, respectively.¹

Hepatocellular carcinoma:¹²

- The most common serum protein marker is AFP.
- The cut-off for AFP in diagnosing HCC is generally 20 ng/mL. However, the sensitivity is around 60%.

Stomach cancer:¹⁰⁻¹¹

- Predictive biomarkers include **PDL-1**, **CLDN18.2** and **MET**.
- In a 2024 US study of gastric and gastroesophageal junction adenocarcinomas, 44.4% of tumours were CLDN18.2-positive overall, with 51.4% positivity specifically in gastric adenocarcinomas.¹⁰
- A **PD-L1 CPS** of 1% or higher is seen in over 80%; however, this can vary with different populations.¹¹

Types and Roles of Biomarkers

There are various ways biomarkers can be used:

- Diagnostic - aid in disease detection
- Prognostic - help determine clinical outcome, regardless of treatment received
- Predictive - determine the potential benefit or lack of response to a treatment
- Monitoring - assess the effect of a certain treatment²

Biomarker testing is usually performed by taking a blood sample or biopsy of the tumour and sending it to a pathology laboratory, where tests are done to determine abnormalities in DNA, RNA, hormones, or proteins.³

Oesophageal cancer:⁴

- Predictive biomarkers to determine the potential treatment response for EAC are **HER2**, **MSI-H**, and **PD-L1**.
- Diagnostic and prognostic biomarkers include **HER2**, and **PD-L1**.⁵

Colorectal cancer:⁶

- Elevated levels of CEA post-surgery could indicate recurrence of the cancer.
- Approximately 40-50% of colorectal cancer patients have a **KRAS** mutation.⁷
- The most common **KRAS** mutations are **G12V**, **G12D**, **G13D**, and **G12A**.
- A **BRAF** mutation is found in 10% of colorectal cancer patients, the most common mutation being V600E.
- Other common biomarkers include **MSI-H** and **HER2/ERBB2**, which both act as prognostic and predictive biomarkers.⁸

Pancreatic cancer:¹³

- KRAS** codon 12 mutations are the most common genetic alterations in PDAC, occurring in over 90% of cases.¹³
- Other common genetic alterations include **TP53**, **CDKN2A**, and **SMAD4**.¹³

Innovations in Detection Technologies

Circulating Nucleic Acids:

- ctDNA is emerging as a promising non-invasive approach for cancer detection.
- A 2024 study showed ctDNA profiling improved therapy matching, survival, and assessment of tumor heterogeneity.¹⁴

- ### Microbiome-Based Biomarkers:
- A 2023 study showed that gut microbiome and metabolite changes, including *Flavonifractor plautii* enrichment and altered bile acid, choline, and tryptophan metabolism, distinguished early-onset colorectal cancer from controls.¹⁵

Breath Analysis:

- A 2022 study showed that analysing VOCs in exhaled breath can noninvasively detect advanced adenomas and colorectal cancer in screening populations, achieving about 77–80% sensitivity and 70% specificity, thus potentially improving colorectal cancer screening accuracy in the future.¹⁶

Abbreviations

AFP: alpha-fetoprotein; CA19-9: carbohydrate antigen 19-9; CEA: carcinoembryonic antigen; CLDN18.2: claudin 18.2; ctDNA: circulating tumour; CPS: Combined Positive Score; DNA: dMMR: mismatch repair deficiency; DPD: dihydrodipyridine dehydrogenase enzyme; EAC: oesophageal adenocarcinoma; ERBB2: Erb-B2 receptor tyrosine kinase 2; GC-MS: gas chromatography mass spectrometry; GI: gastrointestinal; HCC: hepatocellular carcinoma; HDI: high development index; HER2: human epidermal growth factor receptor 2; MSI-H: microsatellite instability; PALB2: partner and localiser of BRCA2; PD-L1: programmed death ligand 1; VEGFR2: vascular endothelial growth factor receptor 2; VOC: volatile organic compounds.

References

- Li M et al. Cancer Communications. 2025;45(7):774-88.
- Chai X et al. Journal of Gastroenterology and Hepatology. 2025;40(5):1059-69.
- Colorectal Cancer Alliance. Available at: [https://colorectalcancer.org/treatment/types-treatment/why-biomarkers-matter/](https://colorectalcancer.org/treatment/types-treatment/why-biomarkers-matter/types-biomarkers). Last accessed: 23 October 2025.
- Martianov AS et al. Int J Mol Sci. 2023;24(5):4868.
- Battaglin F et al. Clin Adv Hematol Oncol. 2018;16(11):735-45.
- Gastric Cancer Foundation. Available at: <https://gastriccancer.org/biomarkers/>. Last accessed: 23 October 2025.
- Waters R et al. JCO Precis Oncol. 2024;8:e2300543.
- Jenkins TM et al. Int J Gynecol Pathol. 2021;40(6):563-74.
- Chan YT et al. Molecular Cancer. 2024;23(1):189.
- Chen M et al. Clinica Chimica Acta. 2025;569:120176.
- Nakamura Y et al. Nat Med. 2025;31(1):165-75.
- Kong C et al. Gut. 2023;72(6):1129-42.
- Cheng HR et al. Clin Transl Gastroenterol. 2022;13(11):e00518.