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What if Every Patient’s Immune System 
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INTRODUCTION

Cancer evolves through layers 
of change: mutations in DNA, shifts in 
gene regulation, altered cell behaviour, 
and dynamic interactions with the 
immune system. Each tumour follows its 
own trajectory through this landscape. 
Computational models are beginning to 
capture parts of this complexity, identifying 
how cancers progress and respond to 
therapy. These tools, however, remain 
narrow: one analyses DNA, another reads 
pathology slides, and another predicts 
immune recognition. They are designed in 
isolation and form a patchwork of insights 
that falls short of explaining the full 
architecture of cancer biology. 

Progress now depends on systems 
capable of learning across biological 
scales. Foundation models present one 
such opportunity. Trained on extensive 
and heterogeneous datasets, they may 
connect a single molecular change to its 
downstream effects. Realising this potential 
requires computational capacity beyond 
conventional research clusters, which 
makes access to national supercomputing 
infrastructure decisive. 

The UK is building this capacity. Facilities 
such as Dawn, a national research 
supercomputer in Cambridge, UK, and 
Isambard-AI in Bristol, UK, represent 
strategic investments in computational 
power, meant to enable biomedical 
foundation models that operate at 
breadth and depth.1 With these resources, 
researchers can move beyond predicting 
one event in isolation to tracing how a 
genetic mutation cascades through a cell, 
into a tissue, and ultimately shapes an 
immune response.

A compelling test case is the concept of 
personalised cancer vaccines. Their design 
depends on predicting which tumour 
fragments can be recognised by T cells. Right 
now, those pipelines often focus on modelling 
specific components of cancer immunity, and 
this results in a small fraction of predicted 
vaccine targets inducing measurable 
responses in patients.2 A foundation model 
could change this by training on richer data 
that could capture the full cascade from 
mutation to immune activation. 

This feature makes the case for such an 
approach. The claim is not that computation 
alone will solve the challenge of cancer 
vaccines; rather, supercomputing-scale 
models offer the integration necessary 
for faster and more reliable progress. 
To realise the potential of personalised 
immunotherapy, the field will need to build 
models that reflect the complexity of cancer 
biology and, at a scale, commensurate with 
the challenge. 

PROGRESS IN TASK-SPECIFIC 
TOOLS HAS SET THE STAGE 
FOR CROSS-CANCER, CROSS-
MODALITY MODELLING 

Over the past decade, task-specific tools 
have been designed that show that cancer 
leaves patterns that algorithms can detect. 
In pathology, deep learning models trained 
on lung and colorectal cancer slides have 
matched expert pathologists in classifying 
tumours.3 Significantly, they can infer genetic 
features, detecting microsatellite instability, 
a sign of defective DNA repair that guides 
treatment, or predicting the likelihood of an 
EGFR mutation, which indicates potential 
benefit from targeted drugs.3  
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In genomics, similar models have helped 
predict patient prognosis and shown which 
early-stage patients can safely avoid 
chemotherapy.4 These cases highlight that 
information from one level of cancer biology 
can identify information about another. 

Immuno-oncology poses an even tougher 
challenge: predicting which tumour 
fragments (peptides) displayed on the cell 
surface the immune system will recognise. 
Tools have improved our ability to predict 
whether a mutated peptide will bind to a 
human leukocyte antigen (HLA) molecule, 
a key step for personalised vaccine 
design.5 Yet, these models expose the 
limits of narrow design: in early-phase 
trials, approximately one in five predicted 
that peptides generate measurable T cell 
responses.2 Many ‘strong’ binders never 
elicit immunity, while some lower-ranked 
peptides prove unexpectedly effective. 
Still, the fact that vaccines can be designed 
this way shows that computational tools 
can capture part of an immensely complex 
process once thought beyond prediction. 

When predictions are made in isolation, 
they overlook how molecular change, tissue 
context, and immune activity depend on 
each other. In today’s vaccine pipelines, 
this separation means that mutations that 
appear promising at one stage may fail for 
different reasons, and thus uncertainty 
compounds. Task-specific tools suggest 
that cancers leave reproducible signatures, 
and that those signatures can be extracted 
with sufficient accuracy to influence patient 
care. They also imply that improvements 
within single-modality, single-function 
predictors will reach a ceiling, because no 
one data type contains enough context to 
explain outcomes on its own. To overcome 
this, models can learn from multiple kinds of 
information at once. 

MULTI-MODAL APPROACHES 
MAKE IT POSSIBLE TO CONNECT 
MOLECULAR FEATURES  
WITH OUTCOMES

A foundation model is a system trained on 
large and diverse datasets to learn patterns 
that can be adapted across many tasks.  

In cancer research, this refers to a model 
that can simultaneously take in DNA 
sequences, gene expression profiles, 
protein maps, tissue images, and immune 
responses. Instead of treating each 
separately, the model builds a shared 
representation that links them, mirroring 
cancer biology as an interconnected system. 

AlphaGenome (Google DeepMind, London, 
UK) demonstrates this approach.6 Traditional 
genomic models tackle one narrow task at a 
time, such as predicting gene splicing or RNA 
levels, without showing how one change 
affects another. AlphaGenome instead 
reads raw DNA and is trained to predict 
many biological readouts at once. In doing 
so, it learns dependencies: how a single 
mutation might alter splicing or change RNA 
abundance. In head-to-head comparison, 
AlphaGenome appears to consistently 
outperform specialised tools by learning 
these connections across layers of biology.6 

Foundation models are not magic bullets. 
They can be expensive to train, difficult to 
interpret, and require infrastructures that 
most cancer centres do not yet have.7 Just 
as importantly, their biological scope is 
incomplete: models like AlphaGenome miss 
long-range interactions and tissue-specific 
effects, which are important in cancer. 
There are areas where narrow tools remain 
highly effective; predictors of binding 
affinity, for example, already approach 
the limits of lab precision.8 The value of 
foundation models lies in linking molecular 
features to functional outcomes that matter 
for patients. 

Cancer vaccines highlight the need for 
this. Current pipelines assess whether 
a mutated peptide binds to an HLA 
molecule, is presented by tumour cells, 
and elicits an immune response. These 
steps reflect decades of immunology, and 
the models that implement them have 
advanced rapidly.2 What has changed is 
the convergence of vaccine development, 
neoantigen research, and machine learning, 
which now makes integrated modelling 
feasible (Figure 1). 
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Foundation models can be trained 
from multi-modal data, including 
immunopeptidomics, T cell recognition, and 
clinical outcomes. By embedding peptides 
in their biological context, such as how 
much they are expressed, whether tumour 
cells develop strategies to stop displaying 
them, and what the microenvironment 
looks like, models could learn why the same 
peptide would work in one patient, yet fail 
in another. This creates the opportunity to 
move beyond ranking individual binders, 
towards selecting sets of peptides that 
work together to drive durable immune 
responses, and to adapt as tumours evolve 
across sites and microenvironments.

Single-function models will remain important 
as clear benchmarks, and foundation models 

can allow the field to move from fragments 
to systems. In cancer vaccines, where 
current tools explain only part of the clinical 
signal, this transition may be the most 
promising way to build predictions that align 
with what patients need. 

SUPERCOMPUTING EXTENDS THE 
REACH OF INDIVIDUAL CLUSTERS

If foundation models offer a way to move 
from fragments to systems, supercomputing 
provides the infrastructure to make that 
transition feasible. Linking genetic changes, 
protein expression, tissue structure, and 
immune outcomes requires significantly 
more capacity than conventional 
bioinformatics clusters were built to deliver. 

Figure 1: PubMed citation trends from 1990–2024 across three domains: cancer vaccines (orange), neoantigen 
prediction (teal), and machine learning (blue). 

Counts of indexed publications were retrieved separately for each domain and normalised to the maximum annual 
value within that series, allowing direct comparison of relative growth over time. Representative methodological  
advances are annotated.

Cell Genesys (now acquired by Genzyme): Cambridge, Massachusetts, USA; Google DeepMind: London, UK; Google: 
Mountain View, California, USA; IBM: Armonk, New York, USA; Meta: Menlo Park, California, USA; OpenAI: San  
Francisco, California, USA; pVAC-Seq: personalised Variant Antigens by Cancer Sequencing; RL:  
reinforcement learning.
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That capacity is now arriving. In the UK, 
new national facilities, including Dawn, 
Isambard-AI, and the forthcoming Stargate 
UK infrastructure partnership, offer the 
scale to train foundation models. 

Supercomputing allows researchers to work 
with larger datasets, as well as tackle more 
ambitious objectives: predicting peptide 
stability, immune recognition, and functional 
outcomes. Supercomputing also enables 
iteration at the pace of real-world medicine. 
A personalised vaccine cannot wait months 
for a model to be retrained; national 
facilities make it possible to adapt quickly 
as new data emerges, keeping timelines 
aligned with clinical need. 

National supercomputing offers capabilities 
that are hard to achieve through other 
approaches. Cloud services can scale, 
though at unsustainable cost and with 
uneasy questions about data sovereignty. 
Federated approaches are elegant in theory, 
yet fragile when faced with the messy, 
multi-modal datasets that cancer research 
depends on. While more efficient model 
designs will help, they cannot replace the 
force generally needed to capture biology 
across scales. National facilities provide 
predictable access to compute. 

This scale brings challenges. Training large 
models requires data to be linked across 
hospitals, protected appropriately, and 
made available in formats that can support 
large-scale training. Concentrating compute 
in few national facilities raises practical 
questions of access and prioritisation, such 
as who gets to run which experiments, 
and on what timescales? These concerns 
are real, yet surmountable. Facilities are 
experimenting with allocation models that 
balance fairness with clinical urgency 
and creating training programmes so that 
biomedical researchers can design and run 
workloads.1 In practice, the challenges are 
less barriers than design constraints. 

Beyond computation, NHS data sit 
across trusts with distinct governance 
arrangements. The UK is addressing this 
through Trusted Research Environments 
(TRE), which allow analysis without data 
leaving institutional control. Programmes 

such as the Federated Research 
Infrastructure by Data Governance 
Extension (FRIDGE) programme deploy 
NHS-compliant TREs directly onto national 
supercomputers, enabling large-scale 
training while preserving local governance.13 
Public trust underpins this work, with 
patient involvement built in and all outputs 
treated as decision-support tools requiring 
validation before clinical use. 

THE UK CAN PROVIDE 
A TEMPLATE FOR HOW 
SUPERCOMPUTING ADVANCES 
DELIVER PATIENT BENEFIT

The UK Cancer AI & Supercompute Project 
is a clinical research consortium that 
has received national supercomputing 
access from the Department for Science, 
Innovation and Technology. Its purpose is to 
evaluate whether national-scale computing 
can help direct the immune system to 
recognise and eliminate cancer to make 
safer, more precise, and more effective 
treatments. Using Dawn, the consortium 
is training foundation models on data from 
tens of thousands of tumours to model 
whole-patient immune responses rather 
than isolated peptide interactions. This 
brings together researchers, physicians, 
patients, and policymakers to test whether 
coordinated infrastructure can accelerate 
discovery in cancer immunotherapy. 

The consortium approaches this 
through three priorities. First, integrating 
genomic, transcriptomic, proteomic, 
and immunopeptidomic data within a 
single model, so that predictions follow 
the cascade from mutation to immune 
recognition. Second, treating vaccines 
as multi-peptide systems, reflecting 
how immune responses arise from 
interactions among sets of peptides. 
Third, benchmarking performance 
across diverse HLA alleles, addressing 
the overrepresentation of European 
populations in existing datasets. Evidence 
from longitudinal pan-cancer cohorts on 
immunotherapy shows why this matters, 
as predictive models can only improve 
when trained on data that reflect authentic  
patient trajectories.14 
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Looking ahead, strong models are 
necessary but not sufficient. The bigger 
challenge is making them usable at a 
national scale. That means enabling patient 
data to be linked across NHS trusts in ways 
that are technically workable and trusted 
in practice. Much of the work sits in the 
details: aligning data standards, handling 
consent for identifiable samples, and 
ensuring governance processes function 
smoothly rather than as obstacles. If 
these foundations are in place, national 
supercomputing can be paired with TREs 
and clinical oversight to support safe, fair 
deployment and real clinical impact. 

This work sits within the UK’s AI Research 
Resource programme, which is investing 
over one billion GBP to expand national 
compute capacity by a factor of 20 by 2030. 
Through this programme, the consortium 
received 10,000 graphics processing unit 
hours on Dawn, providing the scale needed 
to train models on large tumour datasets 
within clinically relevant timelines. 

This project is a test case for aligning 
national-scale infrastructure with a specific 
therapeutic objective. Similar efforts are 

emerging elsewhere, including the USA’s 
Genesis Mission, which brings together 
federal datasets and supercomputing 
to support AI-driven work in health. 
The outcomes of these projects will 
indicate whether foundation models can 
improve candidate selection, accelerate 
vaccine design, and extend therapeutic 
benefits across patient groups, with 
potential impacts on survival, the pace 
of development, and the precision of 
treatment. Beyond vaccines, these 
lessons will help clarify both the potential 
and the limitations of supercomputing in 
translational research, and highlight where 
alternative strategies or complementary 
investments may be necessary. 

CONCLUSION 

The next frontier in cancer care will not be 
won by drugs or datasets alone, but rather by 
the ability to connect them through systems 
powerful enough to reflect the reality of 
human biology. The UK has placed itself 
at the centre of this by bringing together 
supercomputing and clinical ambition.
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