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“ INTRODUCTION

Cancer evolves through layers
of change: mutations in DNA, shifts in
gene regulation, altered cell behaviour,
and dynamic interactions with the
immune system. Each tumour follows its
own trajectory through this landscape.
Computational models are beginning to
capture parts of this complexity, identifying
how cancers progress and respond to
therapy. These tools, however, remain
narrow: one analyses DNA, another reads
pathology slides, and another predicts
immune recognition. They are designed in
isolation and form a patchwork of insights
that falls short of explaining the full
architecture of cancer biology.

Progress now depends on systems
capable of learning across biological
scales. Foundation models present one
such opportunity. Trained on extensive
and heterogeneous datasets, they may
connect a single molecular change to its
downstream effects. Realising this potential
requires computational capacity beyond
conventional research clusters, which
makes access to national supercomputing
infrastructure decisive.

The UK is building this capacity. Facilities
such as Dawn, a national research
supercomputer in Cambridge, UK, and
Isambard-Al in Bristol, UK, represent
strategic investments in computational
power, meant to enable biomedical
foundation models that operate at
breadth and depth." With these resources,
researchers can move beyond predicting
one event in isolation to tracing how a
genetic mutation cascades through a cell,
into a tissue, and ultimately shapes an
immune response.

A compelling test case is the concept of
personalised cancer vaccines. Their design
depends on predicting which tumour
fragments can be recognised by T cells. Right
now, those pipelines often focus on modelling
specific components of cancer immunity, and
this results in a small fraction of predicted
vaccine targets inducing measurable
responses in patients.? A foundation model
could change this by training on richer data
that could capture the full cascade from
mutation to immune activation.

This feature makes the case for such an
approach. The claim is not that computation
alone will solve the challenge of cancer
vaccines; rather, supercomputing-scale
models offer the integration necessary

for faster and more reliable progress.

To realise the potential of personalised
immunotherapy, the field will need to build
models that reflect the complexity of cancer
biology and, at a scale, commensurate with
the challenge.

PROGRESS IN TASK-SPECIFIC
TOOLS HAS SET THE STAGE
FOR CROSS-CANCER, CROSS-
MODALITY MODELLING

Over the past decade, task-specific tools
have been designed that show that cancer
leaves patterns that algorithms can detect.
In pathology, deep learning models trained
on lung and colorectal cancer slides have
matched expert pathologists in classifying
tumours.® Significantly, they can infer genetic
features, detecting microsatellite instability,
a sign of defective DNA repair that guides
treatment, or predicting the likelihood of an
EGFR mutation, which indicates potential
benefit from targeted drugs.®
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In genomics, similar models have helped
predict patient prognosis and shown which
early-stage patients can safely avoid
chemotherapy.* These cases highlight that
information from one level of cancer biology
can identify information about another.

Immuno-oncology poses an even tougher
challenge: predicting which tumour
fragments (peptides) displayed on the cell
surface the immune system will recognise.
Tools have improved our ability to predict
whether a mutated peptide will bind to a
human leukocyte antigen (HLA) molecule,
a key step for personalised vaccine
design.® Yet, these models expose the
limits of narrow design: in early-phase
trials, approximately one in five predicted
that peptides generate measurable T cell
responses.? Many ‘strong’ binders never
elicit immunity, while some lower-ranked
peptides prove unexpectedly effective.
Still, the fact that vaccines can be designed
this way shows that computational tools
can capture part of an immensely complex
process once thought beyond prediction.

When predictions are made in isolation,
they overlook how molecular change, tissue
context, and immune activity depend on
each other. In today’s vaccine pipelines,
this separation means that mutations that
appear promising at one stage may fail for
different reasons, and thus uncertainty
compounds. Task-specific tools suggest
that cancers leave reproducible signatures,
and that those signatures can be extracted
with sufficient accuracy to influence patient
care. They also imply that improvements
within single-modality, single-function
predictors will reach a ceiling, because no
one data type contains enough context to
explain outcomes on its own. To overcome
this, models can learn from multiple kinds of
information at once.

MULTI-MODAL APPROACHES
MAKE IT POSSIBLE TO CONNECT
MOLECULAR FEATURES

WITH OUTCOMES

A foundation model is a system trained on
large and diverse datasets to learn patterns
that can be adapted across many tasks.

In cancer research, this refers to a model
that can simultaneously take in DNA
sequences, gene expression profiles,

protein maps, tissue images, and immune
responses. Instead of treating each
separately, the model builds a shared
representation that links them, mirroring
cancer biology as an interconnected system.

AlphaGenome (Google DeepMind, London,
UK) demonstrates this approach.® Traditional
genomic models tackle one narrow task at a
time, such as predicting gene splicing or RNA
levels, without showing how one change
affects another. AlphaGenome instead

reads raw DNA and is trained to predict
many biological readouts at once. In doing
S0, it learns dependencies: how a single
mutation might alter splicing or change RNA
abundance. In head-to-head comparison,
AlphaGenome appears to consistently
outperform specialised tools by learning
these connections across layers of biology.®

Foundation models are not magic bullets.
They can be expensive to train, difficult to
interpret, and require infrastructures that
most cancer centres do not yet have.” Just
as importantly, their biological scope is
incomplete: models like AlphaGenome miss
long-range interactions and tissue-specific
effects, which are important in cancer.
There are areas where narrow tools remain
highly effective; predictors of binding
affinity, for example, already approach

the limits of lab precision.t The value of
foundation models lies in linking molecular
features to functional outcomes that matter
for patients.

Cancer vaccines highlight the need for
this. Current pipelines assess whether

a mutated peptide binds to an HLA
molecule, is presented by tumour cells,
and elicits an immune response. These
steps reflect decades of immunology, and
the models that implement them have
advanced rapidly.? What has changed is
the convergence of vaccine development,
neoantigen research, and machine learning,
which now makes integrated modelling
feasible (Figure 1).
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Figure 1: PubMed citation trends from 1990-2024 across three domains: cancer vaccines (orange), neoantigen
prediction (teal), and machine learning (blue).
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Counts of indexed publications were retrieved separately for each domain and normalised to the maximum annual
value within that series, allowing direct comparison of relative growth over time. Representative methodological
advances are annotated.

Cell Genesys (now acquired by Genzyme): Cambridge, Massachusetts, USA; Google DeepMind: London, UK; Google:
Mountain View, California, USA; IBM: Armonk, New York, USA; Meta: Menlo Park, California, USA; OpenAl: San
Francisco, California, USA; pVAC-Seq: personalised Variant Antigens by Cancer Sequencing; RL:

reinforcement learning.

Foundation models can be trained can allow the field to move from fragments
from multi-modal data, including to systems. In cancer vaccines, where
immunopeptidomics, T cell recognition, and current tools explain only part of the clinical
clinical outcomes. By embedding peptides signal, this transition may be the most

in their biological context, such as how promising way to build predictions that align
much they are expressed, whether tumour with what patients need.

cells develop strategies to stop displaying

them, and what the microenvironment

looks like, models could learn why the same ~ SUPERCOMPUTING EXTENDS THE
peptide would work in one patient, yet fail REACH OF INDIVIDUAL CLUSTERS

in another. This creates the opportunity to

move beyond ranking individual binders, If foundation models offer a way to move
towards selecting sets of peptides that from fragments to systems, supercomputing
work together to drive durable immune provides the infrastructure to make that
responses, and to adapt as tumours evolve transition feasible. Linking genetic changes,
across sites and microenvironments. protein expression, tissue structure, and

immune outcomes requires significantly
Single-function models will remain important ~ more capacity than conventional
as clear benchmarks, and foundation models  bioinformatics clusters were built to deliver.
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That capacity is now arriving. In the UK,
new national facilities, including Dawn,
Isambard-Al, and the forthcoming Stargate
UK infrastructure partnership, offer the
scale to train foundation models.

Supercomputing allows researchers to work
with larger datasets, as well as tackle more
ambitious objectives: predicting peptide
stability, immune recognition, and functional
outcomes. Supercomputing also enables
iteration at the pace of real-world medicine.
A personalised vaccine cannot wait months
for a model to be retrained; national
facilities make it possible to adapt quickly
as new data emerges, keeping timelines
aligned with clinical need.

National supercomputing offers capabilities
that are hard to achieve through other
approaches. Cloud services can scale,
though at unsustainable cost and with
uneasy questions about data sovereignty.
Federated approaches are elegant in theory,
yet fragile when faced with the messy,
multi-modal datasets that cancer research
depends on. While more efficient model
designs will help, they cannot replace the
force generally needed to capture biology
across scales. National facilities provide
predictable access to compute.

This scale brings challenges. Training large
models requires data to be linked across
hospitals, protected appropriately, and
made available in formats that can support
large-scale training. Concentrating compute
in few national facilities raises practical
questions of access and prioritisation, such
as who gets to run which experiments,

and on what timescales? These concerns
are real, yet surmountable. Facilities are
experimenting with allocation models that
balance fairness with clinical urgency

and creating training programmes so that
biomedical researchers can design and run
workloads.! In practice, the challenges are
less barriers than design constraints.

Beyond computation, NHS data sit
across trusts with distinct governance
arrangements. The UK is addressing this
through Trusted Research Environments
(TRE), which allow analysis without data
leaving institutional control. Programmes
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such as the Federated Research
Infrastructure by Data Governance
Extension (FRIDGE) programme deploy
NHS-compliant TREs directly onto national
supercomputers, enabling large-scale
training while preserving local governance.™
Public trust underpins this work, with
patient involvement built in and all outputs
treated as decision-support tools requiring
validation before clinical use.

THE UK CAN PROVIDE

A TEMPLATE FOR HOW
SUPERCOMPUTING ADVANCES
DELIVER PATIENT BENEFIT

The UK Cancer Al & Supercompute Project
is a clinical research consortium that

has received national supercomputing
access from the Department for Science,
Innovation and Technology. Its purpose is to
evaluate whether national-scale computing
can help direct the immune system to
recognise and eliminate cancer to make
safer, more precise, and more effective
treatments. Using Dawn, the consortium

is training foundation models on data from
tens of thousands of tumours to model
whole-patient immune responses rather
than isolated peptide interactions. This
brings together researchers, physicians,
patients, and policymakers to test whether
coordinated infrastructure can accelerate
discovery in cancer immunotherapy.

The consortium approaches this

through three priorities. First, integrating
genomic, transcriptomic, proteomic,

and immunopeptidomic data within a
single model, so that predictions follow
the cascade from mutation to immune
recognition. Second, treating vaccines

as multi-peptide systems, reflecting

how immune responses arise from
interactions among sets of peptides.
Third, benchmarking performance

across diverse HLA alleles, addressing
the overrepresentation of European
populations in existing datasets. Evidence
from longitudinal pan-cancer cohorts on
immunotherapy shows why this matters,
as predictive models can only improve
when trained on data that reflect authentic
patient trajectories.’
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Looking ahead, strong models are
necessary but not sufficient. The bigger
challenge is making them usable at a
national scale. That means enabling patient
data to be linked across NHS trusts in ways
that are technically workable and trusted

in practice. Much of the work sits in the
details: aligning data standards, handling
consent for identifiable samples, and
ensuring governance processes function
smoothly rather than as obstacles. If

these foundations are in place, national
supercomputing can be paired with TREs
and clinical oversight to support safe, fair
deployment and real clinical impact.

This work sits within the UK’s Al Research
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emerging elsewhere, including the USAs
Genesis Mission, which brings together
federal datasets and supercomputing

to support Al-driven work in health.

The outcomes of these projects will
indicate whether foundation models can
improve candidate selection, accelerate
vaccine design, and extend therapeutic
benefits across patient groups, with
potential impacts on survival, the pace

of development, and the precision of
treatment. Beyond vaccines, these
lessons will help clarify both the potential
and the limitations of supercomputing in
translational research, and highlight where

alternative strategies or complementary

Resource programme, which is investing
over one billion GBP to expand national

compute capacity by a factor of 20 by 2030.
Through this programme, the consortium
received 10,000 graphics processing unit
hours on Dawn, providing the scale needed
to train models on large tumour datasets
within clinically relevant timelines.

This project is a test case for aligning
national-scale infrastructure with a specific

CONCLUSION

investments may be necessary.

The next frontier in cancer care will not be
won by drugs or datasets alone, but rather by
the ability to connect them through systems
powerful enough to reflect the reality of

human biology. The UK has placed itself

therapeutic objective. Similar efforts are
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