Effective Long-Term Treatment with Incobotulinum Toxin After Immunoresistance to Abo- or Ona-Botulinum Toxin in Patients with Cervical Dystonia - European Medical Journal
×

Browse

Effective Long-Term Treatment with Incobotulinum Toxin After Immunoresistance to Abo- or Ona-Botulinum Toxin in Patients with Cervical Dystonia

|
3 Mins
Authors:
Beyza Ürer, Raphaela Brauns, Sara Samadzadeh, *Harald Hefter
Disclosure:

Prof Hefter has received a restricted grant of the private Inge-Diesbach Stiftung to cover the costs of antibody analysis. All other authors have declared no conflicts of interest.

Citation
EMJ Neurol. ;8[1]:52-54. Abstract Review No: AR9.

Each article is made available under the terms of the Creative Commons Attribution-Non Commercial 4.0 License.

Receive our free quarterly newsletters and your choice of journal publication alerts, straight to your inbox.

Join our mailing list

BACKGROUND AND AIMS

Popularity of the use of botulinum neurotoxin Type A (BoNT/A) is rapidly increasing.1 The production of antibodies (AB) against various parts of this BoNT/A complex can be induced, which is hard to avoid during long-term treatment.2 Some AB can reduce the biological function of BoNT/A (neutralising AB [NAB]), others cannot. NAB first reduce duration of efficacy; later, with increasing titres, complete treatment failure occurs.

The onabotulinumtoxinA (onaBoNT/A; Botox®, Coolock, Ireland) and abobotulinumtoxinA (aboBoNT/A; Dysport®, Ipsen, Paris, France) contain the entire botulinum toxin Type A complex with all its different biologically inactive complex proteins. In contrast, the more recently licensed incobotulinumtoxinA (incoBoNT/A; Xeomin®, Merz Pharma, Frankfurt, Germany) only contains the pure BoNT/A toxin. Therefore, the protein load during treatment with incoBoNT/A is very low, as is its antigenicity.3

During long-term treatment of over 10 years with aboBoNT/A or onaBoNT/A for cervical dystonia (CD), induction of NAB occurs in up to 14% of patients. It has been recommended that BoNT/A therapy should be stopped and deep brain stimulation should be performed when a secondary treatment failure has developed.

This cross-sectional study investigated the effectiveness of switching to incoBoNT/A in patients with CD who were partially resistant under treatment with aboBoNT/A or onaBoNT/A.

METHODS AND MATERIALS

In this study, 50 patients with CD with the development of a progressive, clear-cut partial secondary treatment failure (PSTF) after aboBoNT/A or onaBoNT/A treatment who had been switched to incoBoNT/A years prior were recruited. Blood samples were taken for determination of the presence of NAB using the mouse hemidiaphragm assay and demographic as well as treatment-related data were extracted from the charts. Furthermore, patients had to assess the improvement of CD since the switch to incoBoNT/A.

RESULTS

NAB were detected in 16 (32%) of the patients (AB-pos-group). In 34 (68%) patients, no NAB could be detected by means of the mouse hemidiaphragm assay (AB-neg-group). On the day of the switch, the mean severity of CD (STSUI), measured by the TSUI-score, did not differ significantly between both AB groups. However, the dose of incoBoNT/A that had been chosen years earlier to initiate incoBoNT/A was significantly lower (p<0.023) in the AB-neg- compared to the AB-pos-group. Duration of incoBoNT/A treatment did not differ between both groups (7.3 years in the AB-pos- and 7.8 years in the AB-neg-group) (Table 1).

Table 1: Comparison of demographic and treatment-related data in the AB-pos- and AB-neg-group.

AB-neg-group: patient group that were negative for neutralising antibodies; AB-pos-group: patient group that were positive for neutralising antibodies; ATSUI: TSUI-score at present; IMP: the improvement of cervical dystonia since the switch to incobotulinumtoxunA; n.s.; nonsignificant; SD: standard deviation; SDose: dose at switch; STSUI: TSUI minus the score at switch; TSATSUI: time period from switch to the present time; uDu: unit dose uniformity.

During incoBoNT/A, severity of CD scored by means of the TSUI-score was significantly improved by 21.4% (p<0.05) in the AB-pos- and by 33.9% (p<0.01) in the AB-neg-group ([STSUI minus the TSUI-score at present] divided by STSUI). Dose at switch was significantly increased by 90 mouse units incoBoNT/A in the AB-pos (p<0.05) and by 95 mouse units (p<0.01) in the AB-neg-group. The outcome (TSUI-score at present) between both groups did not differ significantly. However, the patient’s global assessment of the treatment effect was significantly better in the AB-neg- compared to the AB-pos-group.

CONCLUSION

In patients with CD and progressive PSTF after abo- or onaBoNT/A therapy, switch to incoBoNT/A can play a prominent role in the level of improvement and should have higher priority over deep brain stimulation in the treatment plan. The improvement observed after the switch to incoBoNT/A is long-lasting with a mean duration of over 7 years, in contrast to the short-lasting improvement observed after the switch to rimabotulinumtoxinB. Furthermore, persistence of NAB after the switch to incoBoNT/A appeared to have a negative influence on long-term outcome in patients with CD and PSTF after abo- or onaBoNT/A treatment.

References
Frevert J. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin Type A products. Drugs R D. 2015;15(1):1-9. Dressler D, Hallett M. Immunological aspects of Botox, Dysport and Myobloc/NeuroBloc. Eur J Neurol. 2006;13(Suppl 1):11-5. Frevert J. Content of botulinum neurotoxin in Botox®/Vistabel®, Dysport®/Azzalure®, and Xeomin®/Bocouture®. Drugs R D. 2010;10(2):67-73.