Single Nucleotide Variations of Mitotic Arrest Deficient 1 Like 1 (MAD1L1) and MAD2L1 Genes in Products of Conception with Aneuploidy - European Medical Journal

Single Nucleotide Variations of Mitotic Arrest Deficient 1 Like 1 (MAD1L1) and MAD2L1 Genes in Products of Conception with Aneuploidy

2 Mins
Reproductive Health
Authors:
Narges Hosseini,1,2 *Masood Bazrgar,2 Roxana Kariminejad,3 Amir Amiri -Yekta,2 Ariana Kariminejad,3 Hossein Najmabadi,4 Parnaz Borjian Boroujeni2
Disclosure:

The authors have declared no conflicts of interest.

Acknowledgements:

This study was funded by Royan Institute for Reproductive Biomedicine.

Citation:
EMJ Repro Health. ;5[1]:57-58. Abstract Review No. AR8.
Keywords:
Aneuploidy, MAD1L1, MAD2L1, miscarriage, single nucleotide variation (SNV).

Each article is made available under the terms of the Creative Commons Attribution-Non Commercial 4.0 License.

BACKGROUND

Miscarriage is a pregnancy loss before the 20th week of the gestation.1 At least 15% of the recognised pregnancies will be terminated by spontaneous miscarriage.2 Several factors such as immunological, genetic, environmental endocrine, anatomical, and thrombophilic factors can be involved in miscarriage.1,3 It is propounded that approximately 35% of abortions are due to aneuploidies.4 Although fetal aneuploidy is associated with maternal age, incidents can also be found in young women.5 Despite adequate knowledge on molecular factors related to aneuploidy, such as cyclin-dependent kinase 1, cohesin, separase, anaphase promoting complex, and spindle assembly checkpoint (SAC),6,7 aneuploidy itself is supposed as the reason of miscarriage without its molecular origin being considered. SAC complex has a critical role in fidelity of chromosome segregation by the control of attachment/detachment between chromosomes and the spindles through a delay in the initiation of anaphase. This complex prevents alteration in the copy number of chromosomes. It is believed that several genes are involved in SAC, such as MAD1L1, MAD2L1, and BUB1.7 Decreased level of BUB1 and MAD2 proteins has been reported in clinical samples of aborted fetuses.8 Another study identified the deletion of the last part of the MAD2L1 genes in primary fibroblast cultures of trisomic miscarriage. 9

METHODS

Using Sanger sequencing, exonic regions of MAD2L1 and exons 4 and 18 of the MAD1L1 gene in aneuploid fetuses were studied for the located pathogenic single nucleotide variations (SNV) rs121908981 and rs121908982. To select the samples, products of conception of mothers <36 years of age were analysed by using array quantitative fluorescence PCR (QF-PCR) and/or comparative genomic hybridisation (aCGH). Those with aneuploidy were enrolled in genotyping. The frequencies of observed SNV were compared with the highest population minor allele frequency (MAF) using Chi Square test. The probable interpretation of the effect of SNV was predicted using seven predictor tools.

RESULTS

Following the results from QF-PCR and aCGH, 40 aneuploid samples were enrolled in genotyping. Targeted pathogenic SNV in MAD1L1 were not observed, but rs1481591257, rs372373978, rs752408355, rs10257349, rs10260386, rs1639921, and rs74431414 SNV in MAD1L1 with the following allele frequencies and p values in comparison with the highest population MAF was detected: C:0.975/T:0.025 (p=0.1775), C:0.9875/T:0.0125 (p<0.0001), T:0.975/C:0.025 (p<0.0001), A:0.4/G:0.6 (p=0.4711), T:0.69/C:0.31 (p<0.0001), A:0.8875/G:0.1125 (p<0.0001), and C:0.9625/A:0.0375 (p=0.6941), respectively. rs758373815, rs903147, rs752146697, rs2908989, rs2908990, and rs78047690 SNV in MAD2L1 with the following allele frequencies and p values in comparison with the highest population MAF was observed: A:0.9875/C:0.0125 (p<0.0001), G:0.61/T:0.39 (p=0.0667), C:0.9625/T:0.0375 (p<0.0001), T:0.425/C:0.575 (p=0.1085), T:0.4875/C:0.5125 (p=0.8231), and C:0.975/T:0.025 (p<0.0001), respectively.

CONCLUSIONS

Frequency of the following rare deleterious SNV were higher than their highest population MAF: rs752146697 in MAD2L1, rs752408355 in MAD1L1, and rs78047690 in MAD2L1. The rs752146697 SNV is a synonymous variant (Q121=) related to codon preference and the two other SNV are missense mutations with the following changes; rs752408355: K619R (Lys619Arg) and rs78047690: R133K (Arg133Lys). The finding of deleterious SNV within genes contributed to chromosome segregation leading to selection of healthier embryos to be transferred through preimplantation genetic testing.

References
Feizollahi N et al. The effect of coagulation factors polymorphisms on abortion. Front Biol. 2018;13(3):190-6. Nikitina TV et al. Comparative cytogenetic analysis of spontaneous abortions in recurrent and sporadic pregnancy losses. Biomed Hub. 2016;1(1):446099. Vaiman D. Genetic regulation of recurrent spontaneous abortion in humans. Biomed J. 2015;38(1):11-24. Hassold T, Hunt P. To err (meiotically) is human: The genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280-91. Jia CW et al. Aneuploidy in early miscarriage and its related factors. Chin Med J. 2015;128(20):2772-6. Webster A, Schuh M. Mechanisms of aneuploidy in human eggs. Trends Cell Biol. 2017;27(1):55-68. Musacchio A. The molecular biology of spindle assembly checkpoint signalling dynamics. Curr Biol. 2015;25(20):R1002-18. Shi Q et al. Reduced expression of Mad2 and Bub1 proteins is associated with spontaneous miscarriages. Mol Hum Reprod. 2010;17(1):14-21. Nath S et al. Is germline transmission of MAD2 gene deletion associated with human fetal loss? Mol Hum Reprod. 2012;18(11):554-62.

Rate this content's potential impact on patient outcomes

Thank you!

Please share some more information on the rating you have given